1. Moreau, L., M. Machmoum, and M. E. Zaïm, "Design of low-speed slotted switched reluctance machine for wind energy applications," Ele. Pow. Comp. and Sys., Vol. 34, No. 10, 1139-1156, 2006.
doi:10.1080/15325000600630376
2. Saou, R., M. E. Zaïm, and K. Alitouche, "Optimal designs and comparison of the doubly salient permanent magnet machine and flux-reversal machine in low-speed applications," Power Components Syst., Vol. 36, No. 9, 914-931, 2008.
doi:10.1080/15325000801960564
3. Saou, R., M. E. Zaïm, and K. Alitouche, "Modelling and design of a low speed flux reversal machine," J. Electr. Syst. 2009, Vol. 36, No. 9, 18-23, 2009.
4. Tarimer, I. and A. Sakar, "Effects of structural design of pole arc offset in a salient pole generator to obtaining sinusoidal voltages with the least harmonics," Przeglad Elektrotechniczny, Vol. 2010, No. 11a, 367-372, 2010.
5. Tarimer, I. and E. O. Yuzer, "Designing of a permanent magnet and directly driven synchronous generator for low speed turbines," Ele. and Electrical Eng., Vol. 6, No. 112, 15-18, 2011.
6. Rupar, U., F. Lahajnar, and P. Zajec, "Iterative-learning-based torque-ripple compensation in a transverse flux motor," IET Cont. Theo. App., Vol. 6, No. 3, 341-348, 2012.
doi:10.1049/iet-cta.2011.0051
7. Shi, U. C., D. C. Yon, C. W. Byung, D. K. Hong, and J. Y. Lee, "Design considerations and validation of permanent magnet vernier machine with consequent pole rotor for low speed servo applications," J. Electr. Eng. Technol., Vol. 8, No. 5, 1146-1151, 2013.
doi:10.5370/JEET.2013.8.5.1146
8. Topaloglu, I., C. Ocak, and I. Tarimer, "A case study of getting performance characteristics of a salient pole synchronous hydrogenerators," Elektronika ir Elektrotechnika, Vol. 97, No. 1, 57-61, 2015.
9. Guerroudj, C., R. Saou, A. Boulayoune, E. M. Zaïm, and L. Moreau, "Performance analysis of Vernier slotted doubly salient permanent magnet generator for wind power," Int. J. Hyd. Ene., Vol. 42, No. 13, 8744-8755, Mar. 30, 2017.
doi:10.1016/j.ijhydene.2016.07.043
10. Ocak, C., D. Uygun, and I. Tarimer, "FEM based multi-criterion design and implementation of a PM synchronous wind generator by fully coupled co-simulation," Adv. in Ele. and Comp. Eng., Vol. 18, 37-42, 2018.
doi:10.4316/AECE.2018.01005
11. Soong, W. L. and N. Ertugrul, "Field-weakening performance of interior permanent-magnet motors," IEEE Tran. on Indu. App., Vol. 38, No. 5, 1251-1258, 2002.
doi:10.1109/TIA.2002.803013
12. Sahin, C., A. E. Amac, M. Karacor, and A. Emadi, "Reducing torque ripple of switched reluctance machines by relocation of rotor moulding clinches," IET Ele. Pow. Appl., Vol. 6, No. 9, 753-760, 2012.
doi:10.1049/iet-epa.2011.0397
13. Guerroudj, C., R. Saou, F. Charpentier, and A. Boulayoune, "Optimal design of a novel doubly salient permanent magnet motors for high power ship propulsion," 2018 XIII ICEM, 2556-2562, IEEE, Alexandroupoli, 2018.
14. Jing, L. and J. Cheng, "Research on torque ripple optimization of switched reluctance motor based on finite element method," Progress In Electromagnetics Research M, Vol. 74, 115-123, 2018.
doi:10.2528/PIERM18071104
15. Massimo, B., P. Tomas, and F. Ivano, "Low-torque ripple design of a ferrite-assisted synchronous reluctance motor," IET Ele. Pow. App. Spec., Vol. 10, No. 5, 319-329, 2016.
doi:10.1049/iet-epa.2015.0248
16. Ketabi, A., A. Yadghar, and M. J. Navardi, "Torque and ripple improving of a SR motor using robust particle swarm optimization of drive current and dimension," Progress In Electromagnetics Research M, Vol. 45, 195-207, 2016.
doi:10.2528/PIERM15112207
17. Moreau, L., M. Machmoum, and M. E. Zaim, "Control and minimization of torque ripple in switched reluctance generator," Eur. Conf. Power Electron. Appl., 1-8, Dresden, 2005.
18. Xue, X. D., K. W. E. Cheng, and S. L. Ho, "A control scheme of torque ripple minimization for SRM drives based on flux linkage controller and torque sharing function," 2nd Int. Conf. Power Electron. Syst. Appl. ICPESA, 79-84, Hong Kong, 2006.
19. Gobbi, R. and K. Ramar, "Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors," IET Ele. Pow. App., Vol. 3, No. 5, 453-460, 2009.
doi:10.1049/iet-epa.2008.0191
20. Xia, Y. Y., J. E. Fletcher, S. J. Finney, K. H. Ahmed, and B. W. Williams, "Torque ripple analysis and reduction for wind energy conversion systems using uncontrolled rectifier and boost converter," IET Ren. Pow. Gen., Vol. 5, No. 5, 377-386, 2011.
doi:10.1049/iet-rpg.2010.0108
21. Hannoun, H., M. Hilairet, and C. Marchand, "High performance current control of a switched reluctance machine based on a gain-scheduling PI controller," Control Eng. Pract., Vol. 19, No. 11, 1377-1386, 2011.
doi:10.1016/j.conengprac.2011.07.011
22. Korkmaz, F., I. Topaloğlu, H. Mamur, M. Ari, and I. Tarimer, "Reduction of torque ripple in induction motor by artificial neural multinetworks," Turk. J. Elec. Eng. & Comp. Sci., Vol. 24, 3492-3502, 2016.
doi:10.3906/elk-1406-54
23. Milad, D., M. S. N. Seyed, and W. A. Jin, "Torque ripple minimization of switched reluctance motor using modified torque sharing function," 2013 21st Iran. Conf. Electr. Eng. ICEE 2013, 1-6, Mashhad, 2013.
24. Lange, T., B. Kerdsup, C. Weiss, and R. W. De Doncker, "Torque ripple reduction in reluctance synchronous machines using an asymmetric rotor structure," 7th IET Int. Conf. PEMD 2014, 1-5, Manchester, 2014.
25. Tahi, S., R. Ibtiouen, and S. Mekhtoub, "Performance optimization of synchronou reluctance machines with two rotor structures," ICEM 2014, 250-255, Berlin, 2014.