Vol. 83
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-22
A Space-Frequency Anti-Jamming Algorithm Based on Sub-Band Energy Detection
By
Progress In Electromagnetics Research M, Vol. 83, 73-82, 2019
Abstract
For most of space-frequency joint anti-jamming algorithms, the solution of adaptive steering vector is a high complexity problem. To solve this issue, a space-frequency combined anti-jamming algorithm based on sub-band energy detection (SF-SED) is proposed. At first, the algorithm performs fast Fourier transform (FFT) on the received data of the array antenna and obtains multi-snapshot data of each sub-band through sub-band decomposition. Then, the interference detection statistic and decision threshold are constructed by the energy of the sub-band to judge whether there is an interference in each sub-band. Finally, different methods are used to solve the adaptive weights of the two types of sub-bands according to sub-band classification results. Compared with the related work, the proposed algorithm not only has lower computational complexity, but also has higher output signal-to-interference-and-noise ratio. Theoretical analysis and simulation results demonstrate the anti-jamming performance of the proposed method.
Citation
Ruiyan Du, Jiaqi Yang, Lei Liu, Fulai Liu, and Hui Song, "A Space-Frequency Anti-Jamming Algorithm Based on Sub-Band Energy Detection," Progress In Electromagnetics Research M, Vol. 83, 73-82, 2019.
doi:10.2528/PIERM19051601
References

1. Kaplan, D. E. and C. Hegarty, Understanding GPS: Principles and Application, Artech House Publishers, 2005.

2. Wang, X., M. Amin, F. Ahmad, and E. Aboutanios, "Interference DOA estimation and suppression for GNSS receivers using fully augmentable arrays," IET Radar, Sonar & Navigation, Vol. 11, No. 3, 474-480, 2017.
doi:10.1049/iet-rsn.2016.0296

3. Chen, Y., P. Chen, and S. Fang, "Novel anti-Jamming algorithm for GNSS receivers using wavelet-packet-transform-based adaptive predictors," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E100-A, No. 2, 602-610, 2017.
doi:10.1587/transfun.E100.A.602

4. Isernia, T. and A. F. Morabito, "Mask-constrained power synthesis of linear arrays with even excitations," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3212-3217, 2016.
doi:10.1109/TAP.2016.2556712

5. Hatke, G. F., "Adaptive array processing for wideband nulling in GPS systems," Proc. 32nd Asilomar Conf. Signals, Systems, and Computers, 2002.

6. Capozza, P. T., B. J. Holland, and T. M. Hopkinson, "Single-chip narrowband frequency domain excisor for a global positioning system (GPS) receiver," IEEE Custom Integrated Circuits, 1999.

7. Frost, III, O. L., "An algorithm for linearly constrained adaptive array processing," Proceedings of the IEEE, Vol. 60, No. 8, 926-935, 1972.
doi:10.1109/PROC.1972.8817

8. Fante, R. L. and J. J. Vacarro, "Cancellation of jammers and jammer multipath in a GPS receiver," IEEE Aerospace and Electronic Systems Magazine, Vol. 13, No. 11, 25-28, 1998.
doi:10.1109/62.730617

9. Liu, F., M. Zhang, X. Wang, and R. Du, "UCA-NW algorithm for space-time antijamming," Progress In Electromagetic Research M, Vol. 71, 117-125, 2018.
doi:10.2528/PIERM18061404

10. Li, Z., Y. Zhang, H. Liu, B. Xue, and Y. Liu, "A robust STAP method for airborne radar based on clutter covariance matrix reconstruction and steering vector estimation," Digital Signal Processing, Vol. 78, 82-91, 2018.
doi:10.1016/j.dsp.2018.02.014

11. Lu, Z., J. Nie, F. Chen, H. Chen, and G. Ou, "13 adaptive time taps of STAP under channel mismatch for GNSS antenna arrays," IEEE Transactions on Instrumentation and Measurement, Vol. 66, No. 11, 1-12, 2017.
doi:10.1109/TIM.2017.2759378

12. Compton, T. R., "The relationship between tapped delay-line and FFT processing in adaptive arrays," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 1, 15-26, 1988.
doi:10.1109/8.1070

13. Fante, R. L. and J. J. Vaccaro, "Wideband cancellation of interference in a GPS receive array," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 2, 549-564, 2000.
doi:10.1109/7.845241

14. Gupta, I. J. and T. D. Moore, "Space-frequency adaptive processing (SFAP) for interference suppression in GPS receivers," Proceedings of the National Technical Meeting of the Institute of Navigation, 377-385, 2003.

15. Gupta, I. J. and T. D. Moore, "Space-frequency adaptive processing (SFAP) for RFI mitigation in spread spectrum receivers," IEEE Antennas and Propagation Society International Symposium, 2003.

16. Chuang, C. and J. Gupta, "On-the-fly estimation of antenna induced biases in SFAP based GNSS antenna arrays," Navigation, Vol. 61, No. 4, 323-330, 2015.
doi:10.1002/navi.73

17. Xu, H., X. Cui, and M. Lu, "Data-oriented calibration method to reduce measurement bias in SFAP-based GNSS receivers," Electronics Letters, Vol. 54, No. 9, 2018.
doi:10.1049/el.2017.3692

18. Liu, W. and R. J. Langley, "Robust space-time beamforming in GNSS by means of second-order cone programming," IEEE Transactions on Antennas & Propagation, Vol. 57, No. 7, 2204-2207, 2009.
doi:10.1109/TAP.2009.2021978