Vol. 86
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-07-26
Design of a Polarization Insensitive Wideband Absorber Using Graphene Based Metasurface
By
Progress In Electromagnetics Research Letters, Vol. 86, 27-33, 2019
Abstract
In this paper, we demonstrate the design of a polarization-independent wideband absorber of light that consists of a perforated graphene sheet on top of a lossless dielectric spacer placed on a metallic reflector. The single layer absorber is duly designed based on impedance matching concept. The simulated results indicate that the structure produces 0.98 THz broad absorption from 1.80 THz to 2.72 THz with absorptivity larger than 90% at the normal incidence. The electromagnetic (EM) field distributions and the plots of surface power loss density have been illustrated to explain the absorption mechanism of the structure. The variation of chemical potential from 0.8 to 1.2 eV keeps 90% absorption bandwidth as much as 1 THz band. The polarization-insensitive feature and the properties under oblique incidence are also investigated. Finally, the interference theory is used to analyze and interpret the broadband absorption mechanism.
Citation
Gopinath Samanta, Jeet Ghosh, Tarakeswar Shaw, and Debasis Mitra, "Design of a Polarization Insensitive Wideband Absorber Using Graphene Based Metasurface," Progress In Electromagnetics Research Letters, Vol. 86, 27-33, 2019.
doi:10.2528/PIERL19051003
References

1. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Trans. Antennas Propag., Vol. 48, 1230-1234, 2000.
doi:10.1109/8.884491

2. Han, Y., W. Che, and Y. Chang, "Investigation of thin and broadband capacitive surface-based absorber by the impedance analysis method," IEEE Trans. Electromag. Comp., Vol. 57, No. 1, 22-26, Feb. 2015.
doi:10.1109/TEMC.2014.2358686

3. Han, Y. and W. Che, "Low-profile broadband absorbers based on capacitive surfaces," Antenna Wireless Propag. Lett., 2016.

4. Li, M., S. Q. Xiao, Y.-Y. Bai, and B.-Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," Antenna Wireless Propag. Lett., Vol. 11, 748-751, 2012.

5. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Lett., Vol. 100, No. 20, 207402(1-4), 2008.
doi:10.1103/PhysRevLett.100.207402

6. Liu, Y., S. Gu, C. Luo, and X. Zhao, "Ultra-thin broadband metamaterial absorber," Applied Physics A, Vol. 108, No. 1, 19-24, 2012.
doi:10.1007/s00339-012-6936-0

7. Sun, J., L. Liu, G. Dong, and J. Zhou, "An extremely broad band metamaterial absorber based on destructive interference," Optics Express, Vol. 19, No. 22, 21155-21162, 2011.
doi:10.1364/OE.19.021155

8. Chen, J., Z. Hu, G. Wang, X. Huang, S. Wang, X. Hu, and M. Liu, "High-impedance surface-based broadband absorbers with interference theory," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4367-4374, 2015.
doi:10.1109/TAP.2015.2459138

9. Ferguson, B. and X. C. Zhang, "Materials for terahertz science and technology," Nature Materials, Vol. 1, No. 1, 26-33, 2002.
doi:10.1038/nmat708

10. Geim, A. K., "Graphene: status and prospects," Science, Vol. 324, No. 5934, 1530-1534, 2009.
doi:10.1126/science.1158877

11. Bao, Q. and K. P. Loh, "Graphene photonics, plasmonics, and broadband optoelectronic devices," ACS Nano, Vol. 6, No. 5, 3677-3694, 2012.
doi:10.1021/nn300989g

12. Fardoost, A., F. G. Vanani, and R. Safian, "Design of a multilayer graphene-based ultrawideband terahertz absorber," IEEE Trans. Nanotech., Vol. 16, No. 1, 68-74, 2017.

13. Xu, B. Z., C. Q. Gu, Z. Li, and Z. Y. Niu, "A novel structure for tunable terahertz absorber based on graphene," Optics Express, Vol. 21, No. 20, 23803-23811, 2013.
doi:10.1364/OE.21.023803

14. Pu, M., P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, and X. Luo, "Strong enhancement of light absorption and highly directive thermal emission in graphene," Optics Express, Vol. 21, No. 10, 11618-11627, 2013.
doi:10.1364/OE.21.011618

15. Yudistira, H. T., "Tailoring multiple reflections by using graphene as background for tunable terahertz metamaterial absorber," Materials Research Express, Vol. 6, No. 7, 075804(1-11), 2019.
doi:10.1088/2053-1591/ab15bd

16. Amin, M., M. Farhat, and H. Bac, "An ultra-broadband multilayered graphene absorber," Optics Express, Vol. 21, No. 24, 29938-29948, 2013.
doi:10.1364/OE.21.029938

17. Yudistira, H. T., L. Y. Ginting, and K. Kananda, "High absorbance performance of symmetrical split ring resonator (SRR) terahertz metamaterial based on paper as spacer," Materials Research Express, Vol. 6, No. 2, 025804(1-9), 2018.
doi:10.1088/2053-1591/aaf27e