Vol. 165
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-08-05
Fast Transient Simulations for Multi-Segment Transmission Lines with a Graphical Model
By
Progress In Electromagnetics Research, Vol. 165, 67-82, 2019
Abstract
This paper studies a computationally efficient algebraic graph theory engine for simulating time-domain one-dimensional waves in a multi-segment transmission line, such as for reflectometry applications. Efficient simulation of time-domain signals in multi-segment transmission lines is challenging because the number of propagation paths (and therefore the number of operations) increases exponentially with each new interface. We address this challenge through the use of a frequency-domain, algebraic graphical model of wave propagation, which is then converted to the time domain via the Fourier transform. We use this model to achieve an exact, stable, and computationally efficient (O(NQ), where N is the number of segments and Q is the bandwidth) approach for studying one-dimensional wave propagation. Our approach requires the reflection and transmission coefficients for each interface and each segment's complex propagation constant. We compare our simulation results with known analytical solutions.
Citation
Joel B. Harley, Mashad Uddin Saleh, Samuel Kingston, Michael A. Scarpulla, and Cynthia Furse, "Fast Transient Simulations for Multi-Segment Transmission Lines with a Graphical Model," Progress In Electromagnetics Research, Vol. 165, 67-82, 2019.
doi:10.2528/PIER19042105
References

1. Krautkramer, J. and H. Krautkramer, Ultrasonic Testing of Materials, Springer Science & Business Media, Apr. 2013.

2. Cawley, P., "Practical guided wave inspection and applications to structural health monitoring," Proc. of the Australasian Congress on Applied Mechanics, 10, Brisbane, Dec. 2007.

3. Moilanen, P., "Ultrasonic guided waves in bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 55, No. 6, 1277-1286, 2008.
doi:10.1109/TUFFC.2008.790

4. Smith, P., C. Furse, and J. Gunther, "Analysis of spread spectrum time domain reflectometry for wire fault location," IEEE Sens. J., Vol. 5, No. 6, 1469-1478, Dec. 2005.
doi:10.1109/JSEN.2005.858964

5. Lowe, M. J. S., "Matrix techniques for modeling ultrasonic waves in multilayered media," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 42, No. 4, 525-542, Jul. 1995.
doi:10.1109/58.393096

6. Furse, C., P. Smith, C. Lo, Y. C. Chung, P. Pendayala, and K. Nagoti, "Spread spectrum sensors for critical fault location on live wire networks," Struct. Control Health Monit., Vol. 12, No. 3–4, 257-267, Jul. 2005.

7. Santos, E. J. P. and L. B. M. Silva, "Calculation of scattering parameters in multiple-interface transmission-line transducers," Measurement, Vol. 47, 248-254, Jan. 2014.
doi:10.1016/j.measurement.2013.08.024

8. Sumithra, P. and D. Thiripurasundari, "Review on computational electromagnetics," Advanced Electromagnetics, Vol. 6, No. 1, 42-55, Mar. 2017.
doi:10.7716/aem.v6i1.407

9. Chakraborty, A. and S. Gopalakrishnan, "A spectrally formulated finite element for wave propagation analysis in layered composite media," Int. J. Solids Struct., Vol. 41, No. 18, 5155-5183, Sep. 2004.
doi:10.1016/j.ijsolstr.2004.03.011

10. Alterman, Z. and F. C. Karal, "Propagation of elastic waves in layered media by finite difference methods," Bulletin of the Seismological Society of America, Vol. 58, No. 1, 367-398, Feb. 1968.

11. Hoefer, W. J. R., "The transmission-line matrix method --- Theory and applications," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 10, 882-893, Oct. 1985.
doi:10.1109/TMTT.1985.1133146

12. Bohlen, T. and E. Saenger, "Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves," Geophysics, Vol. 71, No. 4, T109-T115, Jul. 2006.
doi:10.1190/1.2213051

13. Liu, T., C. Zhao, and Y. Duan, "Generalized transfer matrix method for propagation of surface waves in layered azimuthally anisotropic half-space," Geophysical Journal International, Vol. 190, No. 2, 1204-1212, Aug. 2012.
doi:10.1111/j.1365-246X.2012.05547.x

14. Katsidis, C. C. and D. I. Siapkas, "General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference," Appl. Opt., Vol. 41, No. 19, 3978-3987, Jul. 2002.
doi:10.1364/AO.41.003978

15. Troparevsky, M. C., A. S. Sabau, A. R. Lupini, and Z. Zhang, "Transfer-matrix formalism for the calculation of optical response in multilayer systems: From coherent to incoherent interference," Opt. Express, Vol. 18, No. 24, 24 715-24 721, Nov. 2010.
doi:10.1364/OE.18.024715

16. Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, 2009.

17. Farmaga, I., P. Shmigelskyi, P. Spiewak, and L. Ciupinski, "Evaluation of computational complexity of finite element analysis," Proc. of the International Conference The Experience of Designing and Application of CAD Systems in Microelectronics, 213-214, Feb. 2011.

18. Davidson, D. B. and R. W. Ziolkowski, "Body-of-revolution finite-difference time-domain modeling of space-time focusing by a three-dimensional lens," J. Opt. Soc. Am. A, JOSAA, Vol. 11, No. 4, 1471-1490, Apr. 1994.
doi:10.1364/JOSAA.11.001471

19. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, Nov. 2011.

20. Mason, S. J., "Feedback theory --- Some properties of signal flow graphs," Proceedings of the IRE, Vol. 41, No. 9, 1144-1156, Sep. 1953.
doi:10.1109/JRPROC.1953.274449

21. Schutt-Aine, J. E., "Transient analysis of nonuniform transmission lines," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 39, No. 5, 378-385, May 1992.
doi:10.1109/81.139288

22. Acar, C., "Nth-order voltage transfer function synthesis using a commercially available active component: Signal-flow graph approach," Electron. Lett., Vol. 32, No. 21, 1933-1934, Oct. 1996.
doi:10.1049/el:19961352

23. Biggs, N., N. L. Biggs, and E. N. Biggs, Algebraic Graph Theory, Vol. 67, Cambridge University Press, 1993.

24. Li, Z., Z. Duan, G. Chen, and L. Huang, "Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 57, No. 1, 213-224, Jan. 2010.
doi:10.1109/TCSI.2009.2023937

25. Sezer, M. E. and D. D. Iljak, "Nested-decompositions and clustering of complex systems," Automatica, Vol. 22, No. 3, 321-331, 1986.
doi:10.1016/0005-1098(86)90030-0

26. George, A., J. R. Gilbert, and J. W. Liu, Graph Theory and Sparse Matrix Computation, Vol. 56, Springer Science & Business Media, 2012.

27. Dhillon, I. S. and D. S. Modha, "Concept decompositions for large sparse text data using clustering," Machine Learning, Vol. 42, No. 1–2, 143-175, 2001.
doi:10.1023/A:1007612920971

28. Shuman, D. I., S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," IEEE Signal Processing Magazine, Vol. 30, No. 3, 83-98, May 2013.
doi:10.1109/MSP.2012.2235192

29. Sandryhaila, A. and J. M. Moura, "Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure," IEEE Signal Processing Magazine, Vol. 31, No. 5, 80-90, 2014.
doi:10.1109/MSP.2014.2329213

30. Puschel, M. and J. M. F. Moura, "Algebraic signal processing theory: Foundation and 1-D time," IEEE Trans. Signal Process., Vol. 56, No. 8, 3572-3585, Aug. 2008.
doi:10.1109/TSP.2008.925261

31. Davis, T. A., S. Rajamanickam, and W. M. Sid-Lakhdar, "A survey of direct methods for sparse linear systems," Acta Numerica, Vol. 25, 383-566, 2016.
doi:10.1017/S0962492916000076

32. Bunch, J. R. and D. J. Rose, Sparse Matrix Computations, Academic Press, 2014.

33. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat., Vol. 32, No. 3, 222-227, Aug. 1990.
doi:10.1109/15.57116

34. Davis, T. A., "Algorithm 832: UMFPACK v4.3 --- An unsymmetric-pattern multifrontal method," ACM Trans. Math. Softw., Vol. 30, No. 2, 196-199, Jun. 2004.
doi:10.1145/992200.992206