Vol. 82
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-18
Enhanced Radio Tomographic Imaging Method for Device-Free Localization Using a Gradual-Changing Weight Model
By
Progress In Electromagnetics Research M, Vol. 82, 39-48, 2019
Abstract
Radio tomographic imaging (RTI) is a main method in device-free localization (DFL) that can locate a target by analyzing its shadowing effect on wireless links, while removing the requirement of equipping the target with a device. The accuracy of RTI method closely depends on the accuracy of shadowing weight model, which represents the relationship between the shadowing effect of the target on wireless links and target location. However, most existing models have not been accurate enough for many applications since they cannot explain some phenomena observed in DFL practices. To overcome the shortcoming of the existing weight model, this paper proposes a gradual-changing weight model to enhance the imaging quality of RTI. Meanwhile, a foreground target detection algorithm based on the shape feature of the target image is proposed to reduce the negative impact of background noises and pseudo-targets, thereby further enhancing the localization accuracy. The indoor and outdoor experimental results highlight the advantages of using the proposed method in improving the imaging quality and the positioning accuracy.
Citation
Wei Ke, Haoran Zuo, Mengling Chen, and Yanli Wang, "Enhanced Radio Tomographic Imaging Method for Device-Free Localization Using a Gradual-Changing Weight Model," Progress In Electromagnetics Research M, Vol. 82, 39-48, 2019.
doi:10.2528/PIERM19041603
References

1. Patwari, N. and J. Wilson, "RF sensor networks for device-free localization: Measurements, models, and algorithms," Proc. of the IEEE, Vol. 98, No. 11, 1961-1973, 2010.
doi:10.1109/JPROC.2010.2052010

2. Shukri, S. and L. M. Kamarudin, "Device free localization technology for human detection and counting with RF sensor networks: A review," J. Netw. and Computer Appli., Vol. 97, No. 1, 157-174, 2017.
doi:10.1016/j.jnca.2017.08.014

3. Saeed, A., A. Kosba, and M. Youssef, "Ichnaea: A low-overhead robust WLAN device-free passive localization system," IEEE J. Sel. Topics Signal Process., Vol. 8, No. 1, 5-15, 2014.
doi:10.1109/JSTSP.2013.2287480

4. Sabek, I., M. Youssef, and A. V. Vasilakos, "ACE: An accurate and efficient multi-entity device-Free WLAN localization system," IEEE Trans. Mob. Comput., Vol. 14, No. 2, 261-273, 2015.
doi:10.1109/TMC.2014.2320265

5. Mager, B., P. Lundrigan, and N. Patwari, "Fingerprint-based device-free localization performance in changing environments," IEEE J. Sel. Areas Commun., Vol. 33, No. 11, 2429-2438, 2015.
doi:10.1109/JSAC.2015.2430515

6. Wilson, J. and N. Patwari, "Radio tomographic imaging with wireless networks," IEEE Trans. Mob. Comput., Vol. 9, No. 5, 621-632, 2010.
doi:10.1109/TMC.2009.174

7. Wilson, J. and N. Patwari, "Radio tomographic imaging with wireless networks," IEEE Trans. Mob. Comput., Vol. 9, No. 5, 621-632, 2010.
doi:10.1109/TMC.2009.174

7. Zhao, Y. and N. Patwari, "Robust estimators for variance-based device-free localization and tracking," IEEE Trans. Mob. Comput., Vol. 14, No. 10, 2116-2129, 2015.
doi:10.1109/TMC.2014.2385710

8. Zhao, Y. and N. Patwari, "Histogram distance-based radio tomographic localization," Proc. 11th Int. Conf. IPSN, 129-130, 2012.

9. Kaltiokallio, O., M. Bocca, and N. Patwari, "Enhancing the accuracy of radio tomographic imaging using channel diversity," Proc. 9th IEEE Int. Conf. MASS, 254-262, 2012.

10. Ke, W., Y. Yuan, X. Zhang, and J. Shao, "Device-free electromagnetic passive localization with frequency diversity," Progress In Electromagnetics Research M, Vol. 47, 129-139, 2016.
doi:10.2528/PIERM15102502

11. Wilson, J. and N. Patwari, "A fade-level skew-laplace signal strength model for device-free localization with wireless networks," IEEE Trans. Mob. Comput., Vol. 11, No. 6, 947-958, 2012.
doi:10.1109/TMC.2011.102

12. Bocca, M., A. Luong, N. Patwari, and T. Schmid, "Dial it in: Rotating RF sensors to enhance radio tomography,", arXiv, 2013. [Online]. Available: http://arxiv.org/abs/1312.5480.

13. Ke, W. and T. T. Wang, "Enhanced CS-based device-free localization with RF sensor networks," IEEE Commun. Lett., Vol. 22, No. 12, 2503-2506, 2018.
doi:10.1109/LCOMM.2018.2876896

14. Wang, J., Q. Gao, X. Zhang, and H. Wang, "Device-free localization with wireless networks based on compressing sensing," IET Commun., Vol. 6, No. 15, 2395-2403, 2012.
doi:10.1049/iet-com.2011.0603

15. Kanso, M. A. and M. G. Rabbat, "Compressed RF tomography for wireless sensor networks: Centralized and decentralized approaches," Proc. 5th DCOSS, 173-186, 2009.

16. Hamilton, B. R., X. L. Ma, R. J. Baxley, and S. M. Matechik, "Propagation modeling for radio frequency tomography in wireless networks," IEEE J. Sel. Topics Signal Process, Vol. 8, No. 1, 43-54, 2014.
doi:10.1109/JSTSP.2013.2287471

17. Guo, Y., K. Huang, N. Jiang, X. Guo, and G. Wang, "An exponential-Rayleigh model for RSS-based device-free localization and tracking," IEEE Trans. Mob. Comput., Vol. 14, No. 3, 484-494, 2015.
doi:10.1109/TMC.2014.2329007

18. Wang, Z. H., H. Liu, S. X. Xu, X. Y. Bu, and J. P. An, "A diffraction measurement model and particle filter tracking method for RSS-based DFL," IEEE J. Sel. Areas Commun., Vol. 33, No. 11, 2391-2403, 2015.
doi:10.1109/JSAC.2015.2430517

19. Wang, J., Q. H. Gao, M. Pan, X. Zhang, Y. Yu, and H. Y. Wang, "Toward accurate device-free wireless localization with a saddle surface model," IEEE Trans. Veh. Technol., Vol. 65, No. 8, 6665-6677, 2016.
doi:10.1109/TVT.2015.2476495

20. Rappaport, T. S., Wireless Communication: Principles and Practice, Prentice-Hall, 1999.

21. Athanasiadou, G. E., "Incorporating the fresnel zone theory in ray tracing for propagation modelling of fixed wireless access channels," Proc. 18th IEEE Int. Conf. PIMRC, 1-5, 2007.