Vol. 84
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-27
A Sparse-Based Clutter Suppression Methodology for Single Channel SAR
By
Progress In Electromagnetics Research M, Vol. 84, 137-145, 2019
Abstract
A sparse imaging-based clutter suppression method for one channel synthetic aperture radar (SAR) is proposed in this paper. The Doppler characteristic differences between the radar received signal of clutter and moving targets are utilized in this method. A joint projection operator is formulated, and the norm constraint is employed to realize and promote clutter suppression. The reconstructed MT results with suppressed clutter can be applied to moving target detection and imaging. Numerical simulation can verify the validity and robustness of the proposed methodology.
Citation
Xin Wang, and Teng Li, "A Sparse-Based Clutter Suppression Methodology for Single Channel SAR," Progress In Electromagnetics Research M, Vol. 84, 137-145, 2019.
doi:10.2528/PIERM19041103
References

1. Curlander, J. C. and R. N. McDonoug, Synthetic Aperture Radar, Wiley, 1991.

2. Kaan, D. and Y. Birsen, "Moving target artifacts in Bistatic synthetic aperture radar images," IEEE Transactions on Computational Imaging, Vol. 1, No. 1, 30-43, 2015.
doi:10.1109/TCI.2015.2440995

3. Li, Z. Y., J. J. Wu, Q. Y. Yi, et al. "Bistatic forward-looking SAR ground moving target detection and imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 2, 1000-1026, 2015.
doi:10.1109/TAES.2014.130539

4. Zhang, S. X., M. D. Xing, X. G. Xia, et al. "Robust clutter suppression and moving target imaging approach for multichannel in azimuth high-resolution and wide-swath synthetic aperture radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 2, 687-709, 2015.
doi:10.1109/TGRS.2014.2327031

5. Cerutti-Maori, D. and I. Sikaneta, "A generalization of DPCA processing for multichannel SAR/GMTI radars," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 1, 560-572, 2013.
doi:10.1109/TGRS.2012.2201260

6. Li, J., Y. Huang, G. Liao, et al. "Moving target detection via efficient ATI-GoDec approach for multichannel SAR system," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 9, 1320-1324, 2016.
doi:10.1109/LGRS.2016.2584083

7. Gelli, S., A. Bacci, D. A. Gray, et al. "Virtual multichannel SAR for ground moving target imaging," IET Radar, Sonar and Navigation, Vol. 10, No. 1, 50-62, 2016.
doi:10.1049/iet-rsn.2015.0128

8. Jin, P., Y. Shi, et al. "A sub-aperture detection algorithm for single channel SAR-GMTI," Chinese Journal of Electronics, Vol. 4, 749-753, 2009.

9. Zhang, L., H. D. Guo, C. M. Han, et al. "Moving targets detection in SAR images based on sub-aperture decomposition," Acta Electronica Sinica, Vol. 36, No. 6, 12101-1213, 2008.

10. Yin, J. P., U. Christine, S. Marc, et al. "Radar target and moving clutter separation based on the low-rank matrix optimization," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 8, 4765-4780, 2018.
doi:10.1109/TGRS.2018.2837051

11. Yasin, M., M. Cetin, and A. S. Khwaja, "SAR imaging of moving targets by subaperture based low-rank and sparse decomposition," 2017 25th Signal Processing and Communications Applications Conference, 2017.

12. Sun, H. B., G. S. Liu, H. Gu, et al. "Application of the fractional Fourier transform to moving target detection in airborne SAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 4, 1416-1424, 2002.
doi:10.1109/TAES.2002.1145767

13. Barbarossa, S., "Doppler-rate filtering for detecting moving targets with synthetic aperture radars," Proceedings of SPIE The International Society for Optical Engineering, Vol. 1101, 140, 1989.

14. Yu, X., X. Chen, Y. Huang, et al. "Radar detection for moving target in short-time sparse fractional representative domain," Systems Engineering and Electronics, Vol. 40, No. 11, 2426-2432, 2018.

15. Cetin, M. and W. C. Karl, "Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization," IEEE Transactions on Image Processing, Vol. 10, No. 4, 623-631, 2001.
doi:10.1109/83.913596

16. Huang, P., G. Liao, Z. Yang, et al. "Ground maneuvering target imaging and high-order motion parameter estimation based on second-order keystone and generalized Hough-HAF transform," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 1, 320-335, 2017.
doi:10.1109/TGRS.2016.2606436

17. Mao, X., "SAR imaging of moving target based on knowledge-aided two-dimensional autofocus," Computer Science, 2015.

18. Wahl, D. E., D. A. Yocky, and C. V. J. Jakowatz, "An implementation of a fast backprojection image formation algorithm for spotlight-mode SAR," Proceeding of SPIE, Vol. 6970, No. 8, 2008.