Vol. 82
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-22
RCS Calculation Using Hybrid FDTD-NARX Technique
By
Progress In Electromagnetics Research M, Vol. 82, 73-84, 2019
Abstract
This paper amalgamates two uncorrelated techniques namely finite difference time domain technique (FDTD) and nonlinear autoregressive with exogenous input (NARX) neural network to achieve a faster computation of radar cross section (RCS). It generates only a limited number of FDTD data and uses them to train a NARX neural network. The data beyond this limited number for the FDTD come from the NARX prediction. Comparison of the performance of FDTD-NARX hybrid with other methods indicates good matching with better timing for RCS of electrically larger objects.
Citation
Nihar Kanta Sahoo, Dhruba Charan Panda, Rabindra Kishore Misra, and Amit Kumar Sahu, "RCS Calculation Using Hybrid FDTD-NARX Technique," Progress In Electromagnetics Research M, Vol. 82, 73-84, 2019.
doi:10.2528/PIERM19041007
References

1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., corr. reprinting, SciTech Pub., 2004.

2. Fan, T. and L. Guo, "OpenGL-based hybrid GO/PO computation for RCS of electrically large complex objects," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 666-669, 2014.
doi:10.1109/LAWP.2014.2352372

3. Fan, T., L. Guo, B. Lv, and W. Liu, "An improved backward SBR-PO/PTD hybrid method for the backward scattering prediction of an electrically large target," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 512-515, 2016.
doi:10.1109/LAWP.2015.2456031

4. Jin, K. S., T. I. Suh, S. H. Suk, B. C. Kim, and H. T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-126, 2006.
doi:10.1163/156939306775777341

5. Algar, M., L. Lozano, J. Moreno, I. González, and F. Cátedra, "An efficient hybrid technique in RCS predictions of complex targets at high frequencies," Journal of Computational Physics, Vol. 345, 345-357, 2017.
doi:10.1016/j.jcp.2017.05.035

6. Wu, B. and X. Sheng, "Application of asymptotic waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2597-2604, 2013.
doi:10.1109/TAP.2013.2246532

7. Antyufeyeva, M. S., A. Yu. Butrym, N. N. Kolchigin, M. N. Legenkiy, A. A. Maslovskiy, and G. G. Osinovy, "Specific RCS for describing the scattering characteristic of complex shape objects," Progress In Electromagnetics Research M, Vol. 52, 191-200, 2016.
doi:10.2528/PIERM16042907

8. Taflove, A. and S. C. Hagness, "Finite-difference time-domain solution of Maxwell's Equations," Wiley Encyclopedia of Electrical and Electronics Engineering, 1-33, American Cancer Society, 2016.

9. Elsherbeni, A. Z. and V. Demir, The Finite-Difference Time-Domain Method for Electromagnetics with Matlab Simulations, 2nd Ed., SciTech, 2016.

10. Liu, J.-X., L. Ju, L.-H. Meng, Y.-J. Liu, Z.-G. Xu, and H.-W. Yang, "FDTD method for the scattered-field equation to calculate the radar cross-section of a three-dimensional target," Journal of Computational Electronics, Vol. 17, No. 3, 1013-1018, 2018.
doi:10.1007/s10825-018-1162-4

11. Chen, W., L. Guo, J. Li, and S. Liu, "Research on the FDTD method of electromagnetic wave scattering characteristics in time-varying and spatially nonuniform plasma sheath," IEEE Transactions on Plasma Science, Vol. 44, No. 12, 3235-3242, 2016.
doi:10.1109/TPS.2016.2617680

12. Panda, D. C., S. S. Pattnaik, S. Devi, and R. K. Mishra, "Application of FIR neural network on finite difference time domain technique to calculate input impedance of microstrip patch antenna," International Journal of RF and Microwave Computer Aided Engineering, Vol. 20, No. 2, 158-162, 2010.

13. Delgado, H. J. and M. H. Thursby, "A novel neural network combined with FDTD for the synthesis of a printed dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2231-2236, 2005.
doi:10.1109/TAP.2005.850706

14. Mishra, R. K. and P. S. Hall, "NFDTD concept," IEEE Transactions on Neural Networks, Vol. 16, No. 2, 484-490, 2005.
doi:10.1109/TNN.2004.841799

15. Siegelmann, H. T., B. G. Horne, and C. L. Giles, "Computational capabilities of recurrent NARX neural networks," IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics, Vol. 27, No. 2, 208-215, 1997.
doi:10.1109/3477.558801

16. Zhu, Y. and Z. Q. Lang, "Design of nonlinear systems in the frequency domain: An output frequency response function-based approach," IEEE Transactions on Control Systems Technology, Vol. 26, No. 4, 1358-1371, 2018.
doi:10.1109/TCST.2017.2716379

17. Zhao, W., H. Chen, and W. X. Zheng, "Recursive identification for nonlinear ARX systems based on stochastic approximation algorithm," IEEE Transactions on Automatic Control, Vol. 55, No. 6, 1287-1299, 2010.
doi:10.1109/TAC.2010.2042236

18. Shirangi, M. G. and A. A. Emerick, "An improved TSVD-based Levenberg-Marquardt algorithm for history matching and comparison with Gauss-Newton," Journal of Petroleum Science and Engineering, Vol. 143, 258-271, 2016.
doi:10.1016/j.petrol.2016.02.026

19. Wilamowski, B. M. and H. Yu, "Improved computation for Levenberg-Marquardt training," IEEE Transactions on Neural Networks, Vol. 21, No. 6, 930-937, 2010.
doi:10.1109/TNN.2010.2045657

20. Martin, T., "An improved near- to far-zone transformation for the finite-difference time-domain method," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 9, 1263-1271, 1998.
doi:10.1109/8.719968

21. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

22. EM Software & Systems-S. A. (Pty) Ltd, Stellenbosh, South Africa "FEKO-a comprehensive electromagnetic simulation software tool. Suite 14.0,", http://www.feko.info, 2013.