Vol. 82
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-08
A Novel Four-Step Weakly Conditionally Stable HIE-FDTD Algorithm and Numerical Analysis
By
Progress In Electromagnetics Research M, Vol. 82, 183-194, 2019
Abstract
A novel four-step weakly conditionally stable hybrid implicit-explicit finite-difference time-domain (HIE-FDTD) algorithm in three-dimensional (3-D) domains is presented in this paper, which is suitable for a finer discretization in one dimension. Based on the exponential evolution operator (EEO), the Maxwell's equations in a matrix form can be split into four sub-procedures. Accordingly, the time step is divided into four sub-steps. In addition, by taking second-order central finite-difference approximation for both the temporal and spatial derivatives, the formulation of the proposed four-step HIE-FDTD method is obtained. The proposed four-step HIE-FDTD algorithm is implemented, in which the implicit scheme was applied only in one direction with a fine grid, and the explicit scheme was applied in two other directions with coarser grids. Compared with the existing HIE-FDTD methods, the proposed method has a weaker Courant-Friedrichs-Lewy (CFL) stability condition (and), which means that the proposed method can improve computational efficiency by taking larger time step size. Since the CFLN stability condition of the proposed method is determined by the smaller grid size of the two coarse grid sizes, the proposed method is suitable for analyzing the electromagnetic objects with fine structures in one direction effectively. Besides, the numerical dispersion analysis is given, and the (Δt ≤ 2Δx/c and Δt ≤ 2Δz/c) comparisons of the numerical dispersion analysis among the proposed method, traditional FDTD method, ADI-FDTD method, and two existing HIE-FDTD methods are given. Finally, to testify the computational accuracy and efficiency, numerical experiments of the five FDTD methods are presented.
Citation
Yong-Dan Kong, Chu-Bin Zhang, Min Lai, and Qing-Xin Chu, "A Novel Four-Step Weakly Conditionally Stable HIE-FDTD Algorithm and Numerical Analysis," Progress In Electromagnetics Research M, Vol. 82, 183-194, 2019.
doi:10.2528/PIERM19041002
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

2. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed., Artech House, 2000.

3. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microw. Theory Techn., Vol. 47, No. 10, 2003-Oct. 2007, 1999.
doi:10.1109/22.795075

4. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.868993

5. Chen, J., Z. Wang, and Y. C. Chen, "Higher-order alternative direction implicit FDTD method," Electron. Lett., Vol. 38, No. 22, 1321-1322, Oct. 2002.
doi:10.1049/el:20020911

6. Fu, W. and E. L. Tan, "Stability and dispersion analysis for higher order 3-D ADI-FDTD method," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3691-3696, Nov. 2005.

7. Sun, G. and C. W. Trueman, "Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 5, 2275-2284, May 2006.
doi:10.1109/TMTT.2006.873639

8. Tan, E. L., "Efficient algorithms for Crank-Nicolson-based finite difference time-domain methods," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 2, 408-413, Feb. 2008.
doi:10.1109/TMTT.2007.914641

9. Lee, J. and B. Fornberg, "A split step approaches for the 3-D Maxwell's equations," J. Comput. Appl., Vol. 158, 485-505, 2003.
doi:10.1016/S0377-0427(03)00484-9

10. Fu, W. and E. L. Tan, "Development of split-step FDTD method with higher-order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1253, Sep. 2004.
doi:10.1049/el:20046040

11. Chu, Q. X. and Y. D. Kong, "Three new unconditionally-stable FDTD methods with high-order accuracy," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2675-2682, Sep. 2009.
doi:10.1109/TAP.2009.2027045

12. Kong, Y. D. and Q. X. Chu, "High-order split-step unconditionally-stable FDTD methods and numerical analysis," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3280-3289, Sep. 2011.
doi:10.1109/TAP.2011.2161543

13. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, Sep. 2005.
doi:10.1049/el:20052381

14. Ahmed, I., E. Chua, E. P. Li, and Z. Chen, "Development of three-dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
doi:10.1109/TAP.2008.2005544

15. Saxena, A. K. and K. V. Srivastava, "A three-dimensional unconditionally stable five-step LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1321-1329, Mar. 2014.
doi:10.1109/TAP.2013.2293790

16. Chen, J. and J. Wang, "A novel WCS-FDTD method with weakly conditional stability," IEEE Trans. Electromagn. Compat., Vol. 49, No. 2, 419-426, May 2007.
doi:10.1109/TEMC.2007.897130

17. Wang, J. B., B. H. Zhou, C. Gao, B. Chen, and L. H. Shi, "An efficient one-step leapfrog WCS-FDTD method," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1088-1091, 2014.
doi:10.1109/LAWP.2014.2329054

18. Huang, B. K., G. Wang, Y. S. Jiang, and W. B. Wang, "A hybrid implicit-explicit FDTD scheme with weakly conditional stability," Microw. Opt. Technol. Lett., Vol. 39, No. 2, 97-101, Oct. 2003.
doi:10.1002/mop.11138

19. Chen, J. and J. Wang, "A 3D hybrid implicit-explicit FDTD scheme with weakly conditional stability," Microw. Opt. Technol. Lett., Vol. 48, 2291-2294, Nov. 2006.

20. Chen, J. and J. Wang, "Comparison between HIE-FDTD method and ADI-FDTD mehtod," Microw. Opt. Technol. Lett., Vol. 49, No. 5, 1001-1005, May 2007.
doi:10.1002/mop.22340

21. Chen, J. and J. Wang, "Numerical simulation using HIE-FDTD method to estimate various antennas with fine scale structures," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3603-3612, Dec. 2007.
doi:10.1109/TAP.2007.910338

22. Chen, J. and J. Wang, "A three-dimensional semi-implicit FDTD scheme for calculation of shielding effectiveness of enclosure with thin slots," IEEE Trans. Electromagn. Compat., Vol. 49, No. 2, 354-360, Feb. 2007.
doi:10.1109/TEMC.2007.893329

23. Zhang, Q., B. Zhou, and J. B. Wang, "A novel hybrid implicit-explicit FDTD algorithm with more relaxed stability condition," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1372-1375, 2013.
doi:10.1109/LAWP.2013.2283861

24. Zhang, Q. and B. H. Zhou, "A novel HIE-FDTD method with large time-step size," IEEE Antennas Propag. Magaz., Vol. 57, No. 2, 24-28, Apr. 2015.
doi:10.1109/MAP.2015.2420011

25. Wang, J. B., B. H. Zhou, L. H. Shi, C. Gao, and B. Chen, "A novel 3-D HIE-FDTD method with one-step leapfrog scheme," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 6, 1275-1283, Jun. 2014.
doi:10.1109/TMTT.2014.2320692

26. Wang, J. B., J. L. Wang, B. H. Zhou, and C. Gao, "An efficient 3-D HIE-FDTD method with weaker stability condition," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 998-1004, Mar. 2016.
doi:10.1109/TAP.2015.2513100