Vol. 85
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-23
Design and Development of Recessed Ground Microstrip Line Low Pass Filters
By
Progress In Electromagnetics Research Letters, Vol. 85, 91-99, 2019
Abstract
The design of conventional stepped-impedance microstrip line low pass filter (LPF) is based on high (ZH) to low impedance (ZL) ratio. The width of ZH line, for ZH > 100 Ω, becomes critical and challenging, especially on high dielectric constant substrates. A concept of air-filled recessed ground plane below a microstrip line is introduced in this paper. The effect of dimensions of recessed ground on characteristic impedance, attenuation and propagation constant of a microstrip line are first studied. This simple approach is utilized to design the ZH line of stepped-impedance microstrip line LPFs. Prototypes of recessed ground stepped-impedance microstrip line LPFs with ZH/ZL (keeping ZL constant as 20 Ω)ratio in the range 6 to 10 are designed and developed on Rogers 4350B of height 0.508 mm with εr = 3.66 at 3 GHz. For LPF with ZH/ZL = 10, the measured 3-dB cutoff frequency (fc) is achieved at 3.12 GHz with return loss (RL) > 12 dB and insertion loss (IL) < 0.28 dB in its passband whereas the stopband attenuation (SBA) is better than 38 dB. In comparison to recessed ground LPF, the simulated results of conventional LPF with ZH/ZL = 10 (critical width of ZH line =) are as follows RL > 10 dB and IL < 1.07 dB in passband at fc = 3 GHz. The size of recessed ground LPF is reduced by 25%, when ZH/ZL is increased to 10 from 6. The approach of recessed ground microstrip line avoids the fabrication issues, reduces size, and improves the performance of LPF, which in turns confirms the advantages of recessed ground over conventional microstrip line.
Citation
Anushruti Jaiswal, Mahesh Pandurang Abegaonkar, and Shiban Kishen Koul, "Design and Development of Recessed Ground Microstrip Line Low Pass Filters," Progress In Electromagnetics Research Letters, Vol. 85, 91-99, 2019.
doi:10.2528/PIERL19040304
References

1. Mandal, M. K., P. Mondal, S. Sanyal, and A. Chakrabarty, "Low insertion-loss, sharp-rejection and compact microstrip low-pass filters," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 11, 600-602, Nov. 2006.
doi:10.1109/LMWC.2006.884777

2. Zhang, J., B. Cui, S. Lin, and X.-W. Sun, "Sharp-rejection low-pass filter with controllable transmission zero using Complementary Split Ring Resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 69, 219-226, 2007.
doi:10.2528/PIER06122103

3. Chen, Z.-Y., L. Li, and S.-S. Chen, "A novel dumbbell-shaped defected ground structure with embedded capacitor and its application in low-pass filter design ," Progress In Electromagnetics Research Letters, Vol. 53, 121-126, 2015.
doi:10.2528/PIERL15042006

4. Chen, J., Z.-B. Weng, Y.-C. Jiao, and F.-S. Zhang, "Low pass filter design of Hilbert curve ring defected ground structure," Progress In Electromagnetics Research, Vol. 70, 269-280, 2007.
doi:10.2528/PIER07012603

5. Kumar, A., et al. "Design of nine pole microstrip low pass filter with metal loaded defected ground structure ," 2016 IEEE MTT-S Latin America Microwave Conference (LAMC), 1-3, Puerto Vallarta, 2016.

6. Lu, K., G.-M. Wang, Y.-W. Wang, and X. Yin, "An improved design of Hi-LO microstrip lowpass filter using uniplanar double spiral resonant cells," Progress In Electromagnetics Research Letters, Vol. 23, 89-98, 2011.
doi:10.2528/PIERL11032112

7. Wang, C. J. and T. H. Lin, "A multi-band meandered slotted-groundplane resonator and its application of low-pass filter," Progress In Electromagnetics Research, Vol. 120, 249-262, 2011.
doi:10.2528/PIER11072203

8. Jiang, M. and W. Hong, "An approach for improving the transition-band characteristic of a stepped-impedance low-pass filter," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-4, Shenzhen, 2012.

9. Drayton, R. F., S. Pacheco, J. G. Yook, and L. P. B. Katechi, "Micromachined filters on synthesized substrates," 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 98CH36192), Vol. 3, 1185-1188, Baltimore, MD, USA, 1998.

10. Sharma, P., S. K. Koul, and S. Chandra, "Design and development of microstrip low pass filters at K-band using MEMS technology," 2007 Asia-Pacific Microwave Conference, 1-4, Bangkok, 2007.

11. Eudes, T., B. Ravelo, and A. Louis, "Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis," Progress In Electromagnetics Research, Vol. 112, 183-197, 2011.
doi:10.2528/PIER10111805

12. Ravelo, B., "Modelling of asymmetrical interconnect T-tree laminated on flexible substrate," Eur. Phys. J. Appl. Phys. (EPJAP), Vol. 72, No. 2, 1-9, id 20103, Nov. 2015.

13. Eudes, T. and B. Ravelo, "Analysis of multi-gigabits signal integrity through clock H-tree," International Journal of Circuit Theory and Applications (Int. J. Circ. Theor. Appl.), Vol. 41, No. 5, 535-549, May 2013.
doi:10.1002/cta.818

14., http://ntuemc.tw/upload/file/20110321102525847f2.pdf.
doi:10.1002/cta.818