Vol. 85
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-21
Single Layer, Dual Polarized, 2.4 GHz Patch Antenna with Very High RF Isolation Between DC Isolated Tx-Rx Ports for Full Duplex Radio
By
Progress In Electromagnetics Research Letters, Vol. 85, 65-72, 2019
Abstract
This paper presents a single layer, dual polarized 2.4 GHz microstrip patch antenna based on monostatic radiator. Microstrip-T (MS-T) feeds have been used for DC isolated Tx-Rx ports. It deploys differential feeding for receive mode operation to achieve high interport RF isolation. The differential feeding acts as a signal inversion technique to suppress the in-band self interference (SI) for simultaneous transmit and receive (STAR) operation at same frequency. The implemented single layer, dual polarized, compact patch antenna provides better than 78 dB isolation between DC isolated Tx- Rx ports at centre frequency of 2.393 GHz. Moreover, the implemented antenna achieves better than 64 dB interport isolation for 10 sdB-return loss bandwidth of 50 MHz (2.37 GHz to 2.42 GHz). The measured interport RF isolation is around 70 dB for 25 MHz bandwidth (2.385 GHz to 2.41 GHz). To the best of our knowledge, these are the highest levels of RF isolation reported for single layer, dual polarized microstrip patch antenna with DC isolated ports.
Citation
Haq Nawaz, and Muhammad Abdul Basit, "Single Layer, Dual Polarized, 2.4 GHz Patch Antenna with Very High RF Isolation Between DC Isolated Tx-Rx Ports for Full Duplex Radio," Progress In Electromagnetics Research Letters, Vol. 85, 65-72, 2019.
doi:10.2528/PIERL19032806
References

1. Bharadia, D., E. McMilin, and S. Katti, "Full duplex radios," ACM SIGCOMM 2013, Hong Kong, 2013.

2. Marasevic, J., J. Zhou, H. Krishnaswamy, et al. "Resource allocation and rate gains in practical full-duplex systems," IEEE/ACM Transactions on Networking, Vol. 25, No. 1, 292-305, Feb. 2017.
doi:10.1109/TNET.2016.2575016

3. Korpi, D., T. Riihonen, V. Syrjälä, et al. "Full-duplex transceiver system calculations: Analysis of ADC and linearity challenges," IEEE Trans. Wireless Commun., Vol. 13, No. 7, 3821-3836, Jul. 2014.
doi:10.1109/TWC.2014.2315213

4. Anttila, L., D. Korpi, V. Syrjälä, et al. "Cancellation of power amplifier induced nonlinear self-interference in full-duplex transceivers," 2013 Asilomar Conference on Signals, Systems and Computers, 1193-1198, Pacific Grove, CA, 2013.

5. Nawaz, H. and I. Tekin, "Three dual polarized 2.4 GHz microstrip patch antennas for active antenna and in-band full duplex applications," 2016 16th Mediter. Microwave Symp. (MMS), 1-4, Abu Dhabi, UAE, 2016.

6. Chung, Y., S.-S. Jeon, D. Ahn, et al. "High isolation dual-polarized patch antenna using integrated defected ground structure," IEEE Microw. & Wireless Components Lett., Vol. 14, No. 1, 4-6, Jan. 2004.
doi:10.1109/LMWC.2003.821501

7. Nawaz, H. and I. Tekin, "Dual port single patch antenna with high interport isolation for 2.4 GHz in-band full duplex wireless applications," Microw. Opt. Technol. Lett., Vol. 58, 1756-1759, 2016.
doi:10.1002/mop.29899

8. Deng, C., Y. Li, Z. Zhang, et al. "A wideband high-isolated dual-polarized patch antenna using two different balun feedings," IEEE Antennas & Wireless Propagation Letters, Vol. 13, 1617-1619, 2014.
doi:10.1109/LAWP.2014.2347338

9. Zhang, Y. and P. Wang, "Single ring two-port MIMO antenna for LTE applications," Electronics Letters, Vol. 52, No. 12, 998-1000, 2016.
doi:10.1049/el.2016.0857

10. Chang, K., R. A. York, P., et al. "Active integrated antennas," IEEE Trans. Microwave Theory Tech., Vol. 50, 937-943, Mar. 2002.
doi:10.1109/22.989976

11. Luxey, C. and J.-M. Laheurte, "A retrodirective transponder with polarization duplexing for dedicated short range communications," IEEE Trans. Microwave Theory Tech., Vol. 47, 1910-1915, Sep. 1999.
doi:10.1109/22.788529

12. Bialkowski, M. E. and H. J. Song, "Investigation into a power-combining using a reflect-array of dual polarized aperture-coupled microstrip patch antennas," IEEE Trans. Antennas Propagat., Vol. 50, 841-849, 2002.
doi:10.1109/TAP.2002.1017666

13. Puente, C., J. Anguera, and C. Borja, "Dual-band dual-polarized antenna array,", US Pat. 6,937,206, 2005.

14. Liang, X.-L., S.-S. Zhong, and W. Wang, "Design of a dual-polarized microstrip patch antenna with excellent polarization purity," Microw. Opt. Technol. Lett., Vol. 44, 329-331, 2005.
doi:10.1002/mop.20625

15. Nawaz, H. and I. Tekin, "Double differential fed, dual polarized patch antenna with 90 dB interport RF isolation for 2.4 GHz in-band full duplex transceiver," IEEE Antennas & Wireless Propagation Letters, Vol. 17, No. 2, 287-290, Feb. 2018.
doi:10.1109/LAWP.2017.2786942

16. Nawaz, H. and I. Tekin, "Dual-polarized, differential fed microstrip patch antennas with very high interport isolation for full-duplex communication," IEEE Trans. Antennas Propagat., Vol. 65, No. 12, 7355-7360, Dec. 2017.
doi:10.1109/TAP.2017.2765829