Vol. 85
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-09
Simplified Analysis of Symmetrical RF Crossovers Extended with Arbitrary Complex Passive Two-Port Networks
By
Progress In Electromagnetics Research Letters, Vol. 85, 1-8, 2019
Abstract
There are three mathematical conditions that must be solved simultaneously for the analysis of a fully-symmetric radio-frequency (RF) crossover. When additional reciprocal two-port networks - which might be of an arbitrarily high complexity - are appended at each port of a crossover, analysis of the modified crossover becomes very tedious. Therefore, this paper examines the requirement of the three conditions in such scenario. We show that two of the three conditions can be invoked without considering the additional two-port networks altogether. This is a remarkable simplification considering that the additional two-port networks, in general, would necessitate dealing with more involved algebraic calculations. To demonstrate the usefulness of the presented theory, for the first time, analysis and design of a dual-frequency port-extended crossover is included. A prototype of the dual-frequency crossover operating concurrently at 1 GHz and 2 GHz is manufactured on a Rogers RO4350B laminate having 30 mil substrate height and 3.66 dielectric constant. The close resemblance between the EM simulated and measured results validates the analytical equations.
Citation
Mohammad A. Maktoomi, Mohammad H. Maktoomi, Zeba N. Zafar, Mohamed Helaoui, and Fadhel M. Ghannouchi, "Simplified Analysis of Symmetrical RF Crossovers Extended with Arbitrary Complex Passive Two-Port Networks," Progress In Electromagnetics Research Letters, Vol. 85, 1-8, 2019.
doi:10.2528/PIERL19031806
References

1. Wight, J. S., W. J. Chudobiak, and V. Makios, "A microstrip and stripline crossover structure (letters)," IEEE Trans. Microw. Theory Techn., Vol. 24, No. 5, 270-270, May 1976.
doi:10.1109/TMTT.1976.1128838

2. Lin, F., Q. Chu, and S. W. Wong, "Dual-band planar crossover with two-section branch-line structure," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 6, 2309-2316, Jun. 2013.
doi:10.1109/TMTT.2013.2261084

3. Ren, H., M. Zhou, H. Zhang, and B. Arigong, "A novel dual-band zero-phase true crossover with arbitrary port impedance," IEEE Microw. Wireless Compon. Lett., Vol. 29, No. 1, 29-31, Jan. 2019.
doi:10.1109/LMWC.2018.2882094

4. Feng, W., Y. Zhao, W. Che, R. Gomez-Garcia, and Q. Xue, "Multi-band balanced couplers with broadband common-mode suppression," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 65, No. 12, 1964-1968, Dec. 2018.
doi:10.1109/TCSII.2018.2821161

5. Feng, W., Y. Zhao, W. Che, H. Chen, and W. Yang, "Dual-/tri-band branch line couplers with high Dual-/tri-band branch line couplers with high," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 65, No. 4, 461-465, Apr. 2018.
doi:10.1109/TCSII.2017.2739751

6. Gomez-Garcia, R., R. Loeches-Sanchez, D. Psychogiou, and D. Peroulis, "Multi-stub-loaded differential-mode planar multiband bandpass filters," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 65, No. 3, 271-275, Mar. 2018.
doi:10.1109/TCSII.2017.2688336

7. Wong, F. L. and K. K. M. Cheng, "A novel, planar, and compact crossover design for dual-band applications," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 3, 568-573, Mar. 2011.
doi:10.1109/TMTT.2010.2098883

8. Zhao, Y., W. Feng, T. Zhang, W. Che, and Q. Xue, "Planar single/dual-band crossovers with large-frequency ratios using coupled lines," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 10, 870-872, Oct. 2017.
doi:10.1109/LMWC.2017.2745703

9. Kim, H., B. Lee, and M. J. Park, "Dual-band branch-line coupler with port extensions," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 3, 651-655, Mar. 2010.
doi:10.1109/TMTT.2010.2040342

10. Chu, Q., F. Lin, Z. Lin, and Z. Gong, "Novel design method of tri-band power divider," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 9, 2221-2226, Sep. 2011.
doi:10.1109/TMTT.2011.2160195

11. Chu, P. and C. Tang, "Design of a compact planar crossover with four intersecting channels," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 4, 293-295, Apr. 2018.
doi:10.1109/LMWC.2018.2811246

12. Wang, Y., E. Oliver, N. Nguyen-Trong, J. Ness, and A. M. Abbosh, "Hyperwideband microwave crossover using bridged suspended substrate line configuration," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 12, 1083-1085, Dec. 2018.
doi:10.1109/LMWC.2018.2874503

13. Jiao, L., et al. "A wideband uniplanar double-ring crossover with balanced and single-ended paths," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 12, 5238-5247, Dec. 2018.
doi:10.1109/TMTT.2018.2865565

14. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., Wiley-IEEE Press, USA, Jan. 2001.
doi:10.1109/9780470544662