Vol. 84
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-05-28
Spreading Properties of a Lorentz-Gauss Vortex Beam Propagating in Biological Tissues
By
Progress In Electromagnetics Research Letters, Vol. 84, 83-89, 2019
Abstract
The propagation equation of a Lorentz-Gauss (LG) vortex beam in biological tissues is derived. The influences of the beam parameters and the biological tissues on the spreading properties of a LG vortex beam are investigated. The obtained results are interpreted numerically and shown that the LG vortex beam propagating through biological tissues with the stronger turbulence strength will lose the dark hollow center and evolve into the Gaussian-like beam more rapidly.
Citation
Dajun Liu, Hongming Yin, Guiqiu Wang, Aiyi Dong, and Yaochuan Wang, "Spreading Properties of a Lorentz-Gauss Vortex Beam Propagating in Biological Tissues," Progress In Electromagnetics Research Letters, Vol. 84, 83-89, 2019.
doi:10.2528/PIERL19031801
References

1. Arshad, K., M. Lazar, S. Mahmood, Aman-ur-Rehman, and S. Poedts, "Kinetic study of electrostatic twisted waves instability in nonthermal dusty plasmas," Physics of Plasmas, Vol. 24, 033701, 2017.
doi:10.1063/1.4977446

2. Arshad, K., M. Lazar, and S. Poedts, "Quasi-electrostatic twisted waves in Lorentzian dusty plasmas," Planetary and Space Science, Vol. 156, 139-146, 2018.
doi:10.1016/j.pss.2017.10.013

3. El Gawhary, O. and S. Severini, "Lorentz beams and symmetry properties in paraxial optics," Journal of Optics A --- Pure and Applied Optics, Vol. 8, 409-414, 2006.
doi:10.1088/1464-4258/8/5/007

4. Zhao, C. and Y. Cai, "Paraxial propagation of Lorentz and Lorentz-Gauss beams in uniaxial crystals orthogonal to the optical axis ," J. Mod. Optic, Vol. 57, 375-384, 2010.
doi:10.1080/09500341003640079

5. Liu, D., Y. Wang, G. Wang, and H. Yin, "Influences of oceanic turbulence on Lorentz Gaussian beam ," Optik --- International Journal for Light and Electron Optics, Vol. 154, 738-747, 2018.
doi:10.1016/j.ijleo.2017.10.113

6. Yu, H., L. Xiong, and B. Lue, "Nonparaxial Lorentz and Lorentz-Gauss beams," Optik, Vol. 121, 1455-1461, 2010.
doi:10.1016/j.ijleo.2009.02.005

7. Zhou, G. Q. and X. X. Chu, "Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere," Opt. Express, Vol. 18, 726-731, 2010.
doi:10.1364/OE.18.000726

8. Du, W., C. L. Zhao, and Y. J. Cai, "Propagation of Lorentz and Lorentz-Gauss beams through an apertured fractional Fourier transform optical system," Opt. Laser Eng., Vol. 49, 25-31, 2011.
doi:10.1016/j.optlaseng.2010.09.004

9. Zhou, G. and R. Chen, "Wigner distribution function of Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system," Appl. Phys. B-Lasers O, Vol. 107, 183-193, 2012.
doi:10.1007/s00340-012-4889-9

10. Liu, D., H. Yin, and G. Wang, "Nonparaxial propagation of a partially coherent Lorentz-Gauss beam," Optik --- International Journal for Light and Electron Optics, Vol. 155, 190-199, 2018.
doi:10.1016/j.ijleo.2017.11.013

11. Liu, D., G.Wang, and Y.Wang, "Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence," Optics & Laser Technology, Vol. 98, 309-317, 2018.
doi:10.1016/j.optlastec.2017.08.011

12. Ni, Y. Z. and G. Q. Zhou, "Nonparaxial propagation of Lorentz-Gauss vortex beams in uniaxial crystals orthogonal to the optical axis," Appl. Phys. B-Lasers O, Vol. 108, 883-890, 2012.
doi:10.1007/s00340-012-5118-2

13. Zhou, G. Q. and G. Y. Ru, "Angular momentum density of a linearly polarized Lorentz-Gauss vortex beam," Opt. Commun., Vol. 313, 157-169, 2014.
doi:10.1016/j.optcom.2013.10.010

14. Zhou, G. Q., "Propagation property of a Lorentz-Gauss vortex beam in a strongly nonlocal nonlinear media," Opt. Commun., Vol. 330, 106-112, 2014.
doi:10.1016/j.optcom.2014.05.045

15. Zhou, G. Q., Z. Y. Ji, and G. Y. Ru, "Orbital angular momentum density of a general Lorentz-Gauss vortex beam," Laser Phys., Vol. 26, 075002, 2016.
doi:10.1088/1054-660X/26/7/075002

16. Liu, D., H. Yin, G. Wang, and Y. Wang, "Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence," Appl Optics, Vol. 56, 8785-8792, 2017.
doi:10.1364/AO.56.008785

17. Liu, D., H. Zhong, G. Wang, H. Yin, and Y. Wang, "Evolution properties of a partially coherent Lorentz-Gauss vortex beam in a uniaxial crystal," J. Mod. Optic, Vol. 66, 1-10, 2019.
doi:10.1080/09500340.2018.1508776

18. Liu, X. Y. and D. M. Zhao, "The statistical properties of anisotropic electromagnetic beams passing through the biological tissues," Opt. Commun., Vol. 285, 4152-4156, 2012.
doi:10.1016/j.optcom.2012.06.033

19. Luo, M. L., Q. Chen, L. M. Hua, and D. M. Zhao, "Propagation of stochastic electromagnetic vortex beams through the turbulent biological tissues," Phys. Lett. A, Vol. 378, 308-314, 2014.
doi:10.1016/j.physleta.2013.11.022

20. Lu, X. Y., X. L. Zhu, K. L. Wang, C. L. Zhao, and Y. J. Cai, "Effects of biological tissues on the propagation properties of anomalous hollow beams," Optik, Vol. 127, 1842-1847, 2016.
doi:10.1016/j.ijleo.2015.11.039

21. Liu, D., H. Zhong, and Y. Wang, "Intensity properties of anomalous hollow vortex beam propagating in biological tissues," Optik, Vol. 170, 61-69, 2018.
doi:10.1016/j.ijleo.2018.05.098

22. Jeffrey, H. D. A., Handbook of Mathematical Formulas and Integrals, 4th Ed., Academic Press Inc., 2008.

23. Schmidt, P., "A method for the convolution of lineshapes which involve the Lorentz distribution," Journal of physics B, Vol. 9, 2331-2339, 1976.
doi:10.1088/0022-3700/9/13/018

24. Schmitt, J. and G. Kumar, "Turbulent nature of refractive-index variations in biological tissue," Opt. Lett., Vol. 21, 1310-1312, 1996.
doi:10.1364/OL.21.001310