Vol. 84
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-03
Synthesis and Design of MMR-Based Ultra-Wideband (UWB) Band Pass Filter (BPF) in Suspended Stripline (SSL) Technology
By
Progress In Electromagnetics Research Letters, Vol. 84, 123-130, 2019
Abstract
This paper presents a direct synthesis approach for UWB BPFs. The modified Chebyshev filtering function is used to characterize the frequency response over the whole frequency range of the BPF. As for the filter's circuit, open circuited MMR capacitively coupled with I\O ports is used, and two shunt short-circuited stubs are placed at the two ends of the connecting line to sharpen the rejecting skirt of the passband. The equivalent circuit's transfer function is derived. By equating the filtering function to the transfer function of the circuit, the design parameters are obtained. The uniform connecting line is then replaced by nonuniform line to suppress spurious harmonics and achieve very wide stopband. In order to avoid critical precision requirement in the fabrication of the filter, we design the filter using suspended stripline (SSL) technology to replace the parallel-coupled microstrip lines (PCML) with very small coupling gaps. Finally, a filter prototype is designed and fabricated to experimentally validate the presented method. Experimental results show good agreement with EM-simulated and theoretical ones.
Citation
Mohamad Assaf, Adnan Malki, and Alaa Aldin Sarhan, "Synthesis and Design of MMR-Based Ultra-Wideband (UWB) Band Pass Filter (BPF) in Suspended Stripline (SSL) Technology," Progress In Electromagnetics Research Letters, Vol. 84, 123-130, 2019.
doi:10.2528/PIERL19031602
References

1. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 796-798, Nov. 2005.

2. Wang, H., L. Zhu, and W. Menzel, "Ultra-wideband bandpass filter with hybrid microstrip/CPW structure," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 12, 844-846, Dec. 2005.
doi:10.1109/LMWC.2005.860016

3. Hsu, C.-L., F.-C. Hsu, and J. Kuo, "Microstrip bandpass filters for ultra-wideband (UWB) wireless communications," IEEE MTT-S International Microwave Symposium Digest, 4-682, Long Beach, CA, 2005.

4. Tang, C. and D. Yang, "Realization of multilayered wide-passband bandpass filter with low-temperature co-fired ceramic technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 7, 1668-1674, Jul. 2008.
doi:10.1109/TMTT.2008.925235

5. Hao, Z. and J. Hong, "Ultra-wideband bandpass filter using multilayer liquid-crystal-polymer technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 9, 2095-2100, Sep. 2008.
doi:10.1109/TMTT.2008.2002228

6. Li, R. and L. Zhu, "Compact UWB bandpass filter using stub-loaded multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 1, 40-42, Jan. 2007.
doi:10.1109/LMWC.2006.887251

7. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Network, and Coupled Structures, Artech House, Dedham, MA, 1980.

8. Carlin, H. J. and W. Kohler, "Direct synthesis of band-pass transmission line structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 13, No. 3, 283-297, May 1965.
doi:10.1109/TMTT.1965.1125992

9. Shaman, H. N., A. M. Almughamis, A. M. Alamro, and Y. S. Alharthi, "Compact ultra-wideband (UWB) bandpass filter with wideband harmonic suppression," 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), 1-4, Krakow, 2016.