Vol. 84
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-05-22
Bandwidth Enhanced Circular and Annular Ring Sectoral Patch Antennas
By
Progress In Electromagnetics Research Letters, Vol. 84, 67-73, 2019
Abstract
This paper presents the enhancement of bandwidth in circular and annular ring sectoral patch antennas. The cavity model approach has been used in identifying the higher order mode resonances that are close to each other in the sectoral patches. Bandwidth enhancement centered around these higher order mode resonances is achieved through the use of either a shorting pin or a parasitic patch. The sectoral patches have been simulated using ANSYS HFSS. The optimum position of the shorting pin and the dimension and position of the parasitic patch were determined through parametric simulations on HFSS. Measurements showed that the annular ring sectoral patch with optimally positioned shorting pin achieved 6.3 percent bandwidth with a return loss performance greater than 10 dB while the circular sector patch with a parasitic patch achieved 5.6 percent.
Citation
Uma Balaji, "Bandwidth Enhanced Circular and Annular Ring Sectoral Patch Antennas," Progress In Electromagnetics Research Letters, Vol. 84, 67-73, 2019.
doi:10.2528/PIERL19030507
References

1. Balanis, C. A., Antenna Theory Analysis and Design, 2nd Ed., John Wiley and Sons Inc., 1997.

2. Wood, C., "Improved bandwidth of microstrip antennas using parasitic elements," IEE Proceedings H: Microwaves, Optics and Antennas, Vol. 127, No. 4, 231-234, 1980.
doi:10.1049/ip-h-1.1980.0049

3. Ketineni, R. V., U. Balaji, and A. Das, "Improvement of bandwidth in microstrip antennas using parasitic patch," IEEE Antennas and Propagation Symposium, 1943-1947, 1992.

4. Dahele, J. S., K. F. Lee, and D. P.Wong, "Dual-frequency stacked annular-ring microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 11, 1281-1285, November 1987.
doi:10.1109/TAP.1987.1143997

5. Gomez-Tagle, J. and C. G. Christodoulou, "Extended cavity model analysis of stacked microstrip ring antennas," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 11, 1626-1635, November 1997.
doi:10.1109/8.650074

6. Nurie, N. S. and R. J. Langley, "Input impedance of concentric ring microstrip antennas for dual frequency band operation including surface wave coupling," IEE Proceedings H --- Microwaves, Antennas and Propagation, Vol. 137, No. 6, 331-336, November 1990.
doi:10.1049/ip-h-2.1990.0061

7. Chen, X., G. Fu, S. X. Gong, Y. L. Yan, and W. Zhao, "Circularly polarized stacked annular-ring microstrip antenna with integrated feeding network for UHF RFID readers," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 542-545, 2010.
doi:10.1109/LAWP.2010.2051791

8. Zhang, X. and L. Zhu, "Patch antennas with loading of a pair of shorting pins toward flexible impedance matching and low cross polarization," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1226-1233, April 2016.
doi:10.1109/TAP.2016.2526079

9. Balaji, U., "Circular patch antenna for radio LAN applications," International Conference on Antennas and Propagation, 723-726, 2003.

10. Goto, J., S. Yamaguchi, K. Kihira, T. Toru, and H. Miyashita, "Dual frequency patch antenna using partially shorted annular ring patch antenna," IEEE Antennas and Propagation Symposium URSI, 1869-1870, 2014.

11. Richards, W. F., J. D. Ou, and S. A. Long, "A theoretical and experimental investigation of annular, annular sector and circular sector microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 8, 864-867, August 1984.
doi:10.1109/TAP.1984.1143432

12. Liu, X., Y. Li, Z. Liang, S. Zheng, J. Liu, and Y. Long, "A method of designing a dual-band sector ring microstrip antenna and its application," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 11, 4896-4900, November 2016.
doi:10.1109/TAP.2016.2596903

13. Deshmukh, A. A. and N. V. Phatak, "Broadband sectoral microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 727-730, 2015.
doi:10.1109/LAWP.2014.2385108

14. Zhang, J., Y. Li, Z. Liang, S. Zheng, and Y. Long, "Design of a multifrequency one-quarter-rings microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 209-212, 2015.
doi:10.1109/LAWP.2014.2360412

15. Tanaka, T., M. Takahashi, and K. Ito, "Study on the radiation characteristics of a miniaturized circularly polarized circular sector patch antenna," IEEE Antennas and Propagation Symposium, 1560-1564, 2006.

16. Kandwal, A. and S. K. Khah, "A novel design of gap-coupled sectoral patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 674-677, 2013.
doi:10.1109/LAWP.2013.2264103

17. Dalli, A., L. Zenkouar, and S. Bri, "Conception of circular sector microstrip antenna and array," International Journal of Microwave Applications, 32-37, November-December 2012.