Vol. 84
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-05-16
Investigation of Surface PIN Diodes for a Novel Reconfigurable Antenna
By
Progress In Electromagnetics Research Letters, Vol. 84, 53-57, 2019
Abstract
Solid state plasma antenna based on surface PiN diodes is characterized by its wide radiation range, good stealth characteristics, compatibility with traditional microelectronic technology, and dynamic reconfiguration, which has very broad application prospects in the fields of wireless communication, radar, and remote sensing. To improve carrier concentration and uniformity within theintrinsic region, a novel SPiN diode with a double-layer structure is described in this paper. This structure can compensate the concentration attenuation at the midpoint of the `i' region, which makes carriers have a more uniform distribution with high concentration, and carrier concentration within the `i' region twice of the traditional SPiN diode. A Si/Ge/Si heterojunction diode is also researched in this paper. These results indicate that a fully reconfigurable semiconductor plasma antenna based on this novel surface PiN diode is achieved to meet the currently-growing communication requirements.
Citation
Han Su, Huiyong Hu, Heming Zhang, and Pedram Mousavi, "Investigation of Surface PIN Diodes for a Novel Reconfigurable Antenna," Progress In Electromagnetics Research Letters, Vol. 84, 53-57, 2019.
doi:10.2528/PIERL19030404
References

1. Saeed, S. M., C. A. Balanis, and C. R. Birtcher, "Inkjet-printed flexible reconfigurable antenna for conformal WLAN/WiMAX wireless devices," IEEE Antennas Wireless Propagat. Letters, Vol. 15, 1979-1982, Mar. 2016.
doi:10.1109/LAWP.2016.2547338

2. Tawk, Y., J. Costantine, K. Avery, and C. G. Christodoulou, "Implementation of a cognitive radio front-end using rotatable controlled reconfigurable antennas," IEEE Trans. Antennas Propagat., Vol. 59, No. 5, 1773-1778, May 2011.
doi:10.1109/TAP.2011.2122239

3. Martinelli, R. U. and A. Rosen, "The effects of storage time variations on the forward resistance of silicon P+NN+ diodes at microwave frequencies," IEEE Trans. Electron Devices., Vol. 27, No. 9, 1728, Sep. 1980.
doi:10.1109/T-ED.1980.20094

4. Bai, Y. Y., S. Q. Xiao, M. C. Tang, Z. F. Fu, and B. Z. Wang, "Wide-angle scanning phased array with pattern reconfigurable elements," IEEE Trans. Antennas Propagat., Vol. 59, No. 11, 4071-4076, Nov. 2011.

5. Yashchyshyn, Y., J. Marczewski, and D. Tomaszewski, "Investigation of the S-PIN diodes for silicon monolithic antennas with reconfigurable aperture," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 5, 1100-1106, May 2010.
doi:10.1109/TMTT.2010.2045523

6. Fathy, A. E., A. Rosen, H. S. Owen, F. McGinty, D. J. McGee, G. C. Taylor, R. Amantea, P. K. Swain, S. M. Perlowand, and M. ElSherbiny, "Silicon-based reconfigurable antennas --- Concepts, analysis, implementation, and feasibility," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 6, 1650-1661, Jun. 2003.
doi:10.1109/TMTT.2003.812559