Vol. 84
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-05-08
Multi-Band Printed Antenna for Portable Wireless Communication Applications
By
Progress In Electromagnetics Research Letters, Vol. 84, 39-46, 2019
Abstract
A compact, triple-band (WiMAX, WLAN and X-Band uplink satellite communication) monopole antenna is reported in this paper. The geometry of the proposed antenna consists of a pentagon-shaped patch along with symmetrical hook-shaped resonators and one vertical slot. The reported antenna works at three unique frequencies centered at 3.5 GHz, 5.4 GHz, and 8 GHz, covering absolute bandwidth of 900 MHz (3.2-4.1 GHz), 800 MHz (5.1-5.9 GHz), and 1.6 GHz (7.3-8.9 GHz), respectively. This antenna possesses good gain and high efficiency at all operating bands. The presented antenna has simulated gain (efficiency) of 4 dBi (78%), 4.2 dBi (79.95%), and 4.2 dBi (85.8%) at 3.5, 5.4, and 8 GHz, respectively. The operating bands of the presented antenna can be tuned independently by varying certain correlated parameters. All the simulations are carried out using High Frequency Structure Simulator (HFSS 13.0). The hardware of the simulated antenna is successfully constructed and tested for validation of simulation results. A reasonable match between the simulated and measured results is observed at the operating bands.
Citation
Nazih Khaddaj Mallat, and Amjad Iqbal, "Multi-Band Printed Antenna for Portable Wireless Communication Applications," Progress In Electromagnetics Research Letters, Vol. 84, 39-46, 2019.
doi:10.2528/PIERL19022504
References

1. Iqbal, A., A. Bouazizi, O. A. Saraereh, A. Basir, and R. K. Gangwar, "Design of multiple band, meandered strips connected patch antenna," Progress In Electromagnetics Research, Vol. 79, 51-57, 2018.
doi:10.2528/PIERL18082903

2. Ali, T. and R. C. Biradar, "A triple-band highly miniaturized antenna for WiMAX/WLAN applications," Microwave and Optical Technology Letters, Vol. 60, No. 2, 466-471, 2018.
doi:10.1002/mop.30993

3. Chouti, L., I. Messaoudene, T. A. Denidni, and A. Benghalia, "Triple-band CPW-fed monopole antenna for wlan/wimax applications," Progress In Electromagnetics Research, Vol. 69, 1-7, 2017.

4. Sun, X. L., L. Liu, S. Cheung, and T. Yuk, "Dual-band antenna with compact radiator for 2.4/5.2/5.8 ghz wlan applications," IEEE transactions on Antennas and Propagation, Vol. 60, No. 12, 5924-5931, 2012.
doi:10.1109/TAP.2012.2211322

5. Ghosh, A., V. Kumar, G. Sen, and S. Das, "Gain enhancement of triple-band patch antenna by using triple-band artificial magnetic conductor," IET Microwaves, Antennas & Propagation, Vol. 12, No. 8, 1400-1406, 2018.
doi:10.1049/iet-map.2017.0815

6. Verma, M., B. Kanaujia, and J. Saini, "Design of fan-shaped stacked triple-band antenna for wlan/wimax applications," Electromagnetics, Vol. 38, No. 7, 469-477, 2018.
doi:10.1080/02726343.2018.1519329

7. Pei, J., A.-G. Wang, S. Gao, and W. Leng, "Miniaturized triple-band antenna with a defected ground plane for wlan/wimax applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 298-301, 2011.

8. Iqbal, A., S. Ullah, U. Naeem, A. Basir, and U. Ali, "Design, fabrication and measurement of a compact, frequency reconfigurable, modified t-shape planar antenna for portable applications," Journal of Electrical Engineering & Technology, Vol. 12, No. 4, 1611-1618, 2017.

9. Iqbal, A. and O. A. Saraereh, "A compact frequency reconfigurable monopole antenna for wi-fi/wlan applications," Progress In Electromagnetics Research Letters, Vol. 68, 79-84, 2017.

10. Boukarkar, A., X. Q. Lin, Y. Jiang, and Y. Q. Yu, "Miniaturized single-feed multiband patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 850-854, 2017.
doi:10.1109/TAP.2016.2632620

11. Song, Y., Y.-C. Jiao, H. Zhao, Z. Zhang, Z.-B. Weng, and F.-S. Zhang, "Compact printed monopole antenna for multiband WLAN applications," Microwave and Optical Technology Letters, Vol. 50, No. 2, 365-367, 2008.
doi:10.1002/mop.23078

12. Elavarasi, C. and T. Shanmuganantham, "SRR loaded CPW-fed multiple band rose flower-shaped fractal antenna," Microwave and Optical Technology Letters, Vol. 59, No. 7, 1720-1724, 2017.
doi:10.1002/mop.30609

13. Rahim, S. B. A., C. K. Lee, A. Qing, and M. H. Jamaluddin, "A triple-band hybrid rectangular dielectric resonator antenna (RDRA) for 4G LTE applications," Wireless Personal Communications, Vol. 98, No. 3, 3021-3033, 2018.
doi:10.1007/s11277-017-5014-5