Vol. 80
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-19
An h -Shaped Differential Fed Patch Antenna for a GaN Base Station Transmitter
By
Progress In Electromagnetics Research M, Vol. 80, 181-191, 2019
Abstract
In this paper, a differentially fed, structurally simple, patch antenna, operating at 5.2 GHz is presented. The proposed antenna is particularly designed for a base station, Gallium Nitride (GaN) transmitter. The antenna is composed of an H-shaped patch, backed by a ground plane, with two differential feeds placed at the longitudinal edges. The size of the antenna is 0.55λ0 x 0.49λ0 x 0.27λ0 (where λ0 is the free space wavelength at the center frequency). A prototype of the stand-alone antenna is designed, fabricated, and measured. The antenna offers a voltage standing wave ratio (VSWR) bandwidth of 4% and a differential impedance of 100, which matches most of the differential integrated circuits. The measured gain and directivity of the proposed differential antenna are 5.3 dBi and 7 dB, respectively. From simulation it is observed that the proposed antenna possesses a front to back ratio of 15.69 dB and a 3 dB beamwidth of 84˚. The measured peak efficiencies of the antenna in the lower and higher bands are 84% and 59%, respectively. Details of the design and lumped model, along with the experimental and simulated results, are presented and discussed. The effect of scaling different design parameters for operation at different frequency bands is considered as well.
Citation
Rida Gadhafi, Dan Cracan, Ademola Akeem Mustapha, and Mihai Sanduleanu, "An h -Shaped Differential Fed Patch Antenna for a GaN Base Station Transmitter," Progress In Electromagnetics Research M, Vol. 80, 181-191, 2019.
doi:10.2528/PIERM19020603
References

1. Ding, C. and K. M. Luk, "Compact differential fed dipole antenna with wide bandwidth stable gain and low cross polarization," Electronic Letters, Vol. 53, No. 15, 1019-1021, 2017.
doi:10.1049/el.2017.1972

2. Xue, Q., X. Zhang, and C. H. Chin, "A novel differential fed patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 5, No. 1, 471-474, 2006.
doi:10.1109/LAWP.2006.885168

3. Gadhafi, R., D. Cracan, A. A. Mustapha, and M. Sanduleanu, "A tuning fork shaped differential dipole antenna with floating reflectors," Progress In Electromagnetics Research Letters, Vol. 80, 47-52, 2018.
doi:10.2528/PIERL18100902

4. Kotani, K., A. Sasaki, and T. Ito, "High efficiency differential drive CMOS rectifier for UHF RFIDs," IEEE J. Solid-State Circuits, Vol. 44, No. 11, 3011-3018, 2019.
doi:10.1109/JSSC.2009.2028955

5. Le, T., K. Mayaram, and T. Fiez, "Efficient far field energy harvesting for passively powered sensor networks," IEEE J. Solid-State Circuits, Vol. 43, No. 5, 1287-1302, 2008.
doi:10.1109/JSSC.2008.920318

6. Scorcioni, S., L. Larcher, and A. Bertacchini, "A reconfigurable differential CMOS RF energy scavenger with 60% peak efficiency and 21 dBm sensitivity," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 3, 155-157, 2013.
doi:10.1109/LMWC.2013.2243376

7. Liu, N. W., L. Zhu, W. W. Choi, and J. D. Zhang, "A differential fed microstrip patch antenna with bandwidth enhancement under operation of TM10 and TM30 modes," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1607-1614, 2007.
doi:10.1109/TAP.2017.2670329

8. Arrawatia, M., M. S. Bhaghni, and G. Kumar, "Differential microstrip antenna for energy harvesting," IEEE. Trans. Antennas Propag., Vol. 63, No. 4, 1581-1588, 2015.
doi:10.1109/TAP.2015.2399939

9. See, T. S. P., X. Qing, W. Liu, and Z. N. Chen, "A wideband ultra-thin differential loop fed patch antenna for head implants," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3244-3248, 2015.
doi:10.1109/TAP.2015.2422354

10. Han, L., W. Zhang, X. Chen, G. Han, and R. Ma, "Design of a compact differential dual frequency antenna with stacked patches," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1387-1392, 2010.
doi:10.1109/TAP.2010.2041146

11. Hu, H. T., F. C. Chen, J. F. Qian, and Q. X. Chu, "A differential filtering microstrip antenna array with intrinsic common mode rejection," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7361-7365, 2017.
doi:10.1109/TAP.2017.2764097

12. Pepe, D., L. Vallozi, H. Rogier, and D. Zito, "Planar differential antenna for short range UWB pulse radar sensor," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1527-1530, 2013.
doi:10.1109/LAWP.2013.2291957

13. Wu, H., J. Zhang, L. Han, R. Yang, and W. Zhang, "Differential dual-band antenna-in-package with T-shaped slots," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1446-1449, 2012.
doi:10.1109/LAWP.2012.2228623

14. Jin, H., W. Che, K. S. Chin, G. Shen, W. Yang, and Q. Xue, "60 GHz LTCC differential fed patch antenna array with high gain by using soft surface structures," IEEE Trans. Antennas Propag., Vol. 65, No. 1, 206-216, 2017.
doi:10.1109/TAP.2016.2631078

15. Wang, Y., F. Zhu, and S. Gao, "Design and investigation of a differential fed UWB patch antenna with polarization diversity," International J. of Antennas and Prop., ID. 4254830, 2016.

16. Tang, Z., J. Liu, and Y. Yin, "Design and measurement of a differential printed antenna for a wireless sensor node," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2228-2231, 2017.

17. Gadhafi, R., D. Cracan, A. Mustapha, and M. Sanduleanu, "An H-shaped differential antenna for 5G/FR1 applications," IEEE MTT-S Latin America Microwave Conference, Arequipa, Peru, December 12–14, 2018.

18. Zito, D. and D. Pepe, "Planar differential antenna design and integration with pulse radar microchip sensor," IEEE Sensor J., Vol. 14, No. 8, 2477-2487, 2014.
doi:10.1109/JSEN.2013.2295678

19. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2002, ISBN 1-58053-24-6.

20. Meys, R. and F. Janssens, "Measuring the impedance of balanced antennas by an S-parameter method," IEEE Antennas Propag. Mag., Vol. 40, No. 6, 62-65, 1998.
doi:10.1109/74.739191

21. Zhang, Y. P. and J. J. Wang, "Theory and analysis of differentially-driven microstrip antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1092-1099, 2006.
doi:10.1109/TAP.2006.872597

22. Chouchene, W., C. Larbi, and T. Aguili, "New electrical equivalent circuit model of the inset fed rectangular patch antenna," 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), 646-651, St Petersburg, Russia, May 22–25, 2017.

23. Electrical Specifications Data Sheet [Online], available at www.markimicrowave.com/Assets/data-sheets/BAL-0106.pdf.

24. Gadhafi, R. and M. Sanduleanu, "A modified patch antenna with square-open loop resonator slot for improved bandwidth performance for in WiFi applications," Adv. in Science, Tech. and Engineering Systems J., Vol. 2, No. 3, 1467-1471, 2017.
doi:10.25046/aj0203183