Vol. 84
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-05-08
Wideband Probe-Fed Rectangular Patch with Defected Ground Structure for Cross Polarization Suppression
By
Progress In Electromagnetics Research Letters, Vol. 84, 31-38, 2019
Abstract
In this paper, a new method of improving cross-polarization (XP) performance on a wideband microstrip antenna is proposed, by adopting a defected ground structure (DGS). This F-slot shaped defected ground structure (F-DGS) exhibits considerable improvement in terms of XP properties, broad boresight angular suppression, and impedance bandwidth (S11 < -10 dB). Lower than -26 dB XP level is achieved over 206˚ angular range, while the impedance bandwidth is broadened to 15.5%. Both wideband rectangular patches with and without F-DGS have been fabricated and experimented.
Citation
Xuanli Fu, Chunhong Chen, Chengqiang Li, and Wenwei Wang, "Wideband Probe-Fed Rectangular Patch with Defected Ground Structure for Cross Polarization Suppression," Progress In Electromagnetics Research Letters, Vol. 84, 31-38, 2019.
doi:10.2528/PIERL19020302
References

1. Guha, D. and Y. M. M. Antar, Microstrip and Printed Antennas New Trends, Techniques and Applications, Wiley Int. Sc., U.K., 2010.
doi:10.1002/9780470973370

2. Guha, D., M. Biswas, and Y. M. M. Antar, "Microstrip patch antenna with defected ground structure for cross polarization suppression," IEEE Antennas Wireless Propag. Lett., Vol. 4, No. 1, 455-458, Dec. 2005.
doi:10.1109/LAWP.2005.860211

3. Guha, D., C. Kumar, and S. Pal, "Improved cross-polarization characteristics of circular microstrip antenna employing arc-shaped defected ground structure (DGS)," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1367-1369, Dec. 2009.
doi:10.1109/LAWP.2009.2039462

4. Esa, M., U. Jamaluddin, and M. S. Awang, "Antenna with DGS for improved performance," Proc. IEEE Asia-Pac. Conf. Appl. Electromagn. (APACE), 1-4, 2010.

5. Kumar, C. and D. Guha, "Nature of cross-polarized radiations from probe fed circular microstrip antennas and their suppression using different geometries of defected ground structure (DGS)," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 92-101, Jan. 2012.
doi:10.1109/TAP.2011.2167921

6. Zulkifli, F. Y., S. T. Lomorti, and E. T. Rahardjo, "Improved design of triangular patch linear array microstrip antenna using isosceles-triangular defected ground structure," Proc. of Asia-Pacific Microwave Conf., Bangkok, Dec. 11-14, 2007.

7. Kumar, C. and D. Guha, "Modulation of substrate fields: Key to realize universal DGS configuration for suppressing cross-polarized radiations from a microstrip patch having any geometry," IEEE Antennas and Propagation Society Int. Symp. Digest, IL, USA, Jul. 8-13, 2012.
doi:10.1109/TAP.2011.2167921

8. Kumar, C. and D. Guha, "Defected ground structure (DGS)-integrated rectangular microstrip patch for improved polarization purity with wide impedance bandwidth," IET Microw. Antennas Propag., Vol. 8, No. 8, 589-596, Jun. 2014.
doi:10.1049/iet-map.2013.0567

9. Ghosh, A., D. Ghosh, S. Chattopadhyay, and L. Singh, "Rectangular microstrip antenna on slot type defected ground for reduced cross polarized radiation," IEEE Antennas Wireless Propag. Lett., Vol. 14, 321-324, Feb. 2015.
doi:10.1109/LAWP.2014.2363563

10. Kumar, C. and D. Guha, "Reduction in cross-polarized radiation of microstrip patches using geometry independent resonant-type defected ground structure (DGS)," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2767-2772, Jun. 2015.
doi:10.1109/TAP.2015.2414480

11. Kumar, C., M. I. Pasha, and D. Guha, "Microstrip patch with nonproximal symmetric defected ground structure (DGS) for improved cross polarization properties over principal radiation planes," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1412-1414, 2015.
doi:10.1109/LAWP.2015.2406772

12. Pasha, M. I., C. Kumar, and D. Guha, "Rectangular microstrip patch with symmetrically shaped defected ground structure for improved cross-polarization characteristics," IEEE Applied Electromagnetics Conference (AEMC), Guwahati, India, Dec. 18-21, 2015.

13. Tanha, M. A. and P. V. Brennan, "Wideband T-squared patch antenna with reduced cross-polarization," IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 700-703, Turin, Italy, Sep. 2015.

14. Khandelwal, M. K., B. K. Kanaujia, S. Dwari, and S. Kumar, "Design and analysis of microstrip DGS patch antenna with enhanced bandwidth for Ku band applications," International Conference on Microwave and Photonics (ICMAP), Dhanbad, India, Dec. 13-15, 2013.

15. Kumar, C. and D. Guha, "Asymmetric geometry of defected ground structure for rectangular microstrip: A new approach to reduce its cross-polarized fields," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2503-2506, Jun. 2016.
doi:10.1109/TAP.2016.2537360

16. Derneryd, A. G., "Linearly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 24, No. 6, 846-850, Nov. 1976.
doi:10.1109/TAP.1976.1141445

17. Huang, J., "The finite ground effect on the microstrip antenna radiation panem," IEEE Trans. Antennas Propag., Vol. 31, 649-653, 1983.
doi:10.1109/TAP.1983.1143108

18. Weigand, S., G. H. Huff, K. H. Pan, and J. T. Bernhard, "Analysis and design of broad-band single-layer rectangular U-slot microstrip patch antennas," IEEE Trans. Antennas Propag., Vol. 51, No. 3, 457-468, Mar. 2003.
doi:10.1109/TAP.2003.809836