Vol. 83
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-22
Compact Dual-Band Substrate Integrated Waveguide Crossover with High Isolation
By
Progress In Electromagnetics Research Letters, Vol. 83, 23-28, 2019
Abstract
A compact dual-band substrate integrated waveguide (SIW) crossover with high isolation is proposed. Two identical slots are etched on the ground plane to achieve dual-band response and compact size. The passbands are generated below the cutoff frequency of the SIW due to the electric dipole behaviour of the slots. In-line ports are also employed to obtain good transmission and high isolation. To validate the concept, a dual-band crossover operating at 2.4 GHz and 5.4 GHz is designed, fabricated, and measured. The crossover size including in-line ports is 43.2×43.2 mm2, equivalent to 0.43λg×0.43λg, here λg is the guided wavelength at the first operating frequency. The tested insertion loss and isolation at the two operating frequencies are smaller than 0.27 dB and greater than 40 dB, respectively.
Citation
Sholampettai Karthikeyan, "Compact Dual-Band Substrate Integrated Waveguide Crossover with High Isolation," Progress In Electromagnetics Research Letters, Vol. 83, 23-28, 2019.
doi:10.2528/PIERL19013004
References

1. He, Z., J. Cai, Z. Shao, X. Li, and Y. Huang, "A novel power divider integrated with SIW and DGS technology," Progress In Electromagnetics Research, Vol. 139, 289-301, 2013.
doi:10.2528/PIER13022005

2. Hesari, S. S. and J. Bornemann, "Substrate integrated waveguide crossover formed by orthogonal TE102 resonators," European Microwave Conference (EuMC), 17-20, 2017.

3. Zhang, X. C., Z. Y. Yu, and J. Xu, "Novel band-pass Substrate Integrated Waveguide (SIW) filter based on Complementary Split Ring Resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201

4. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microw. Wireless Compon. Lett., Vol. 12, No. 9, 333-335, 2002.
doi:10.1109/LMWC.2002.803188

5. Horng, S. T., "A rigorous study of microstrip crossovers and their possible improvements," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 9, 1802-1806, 1994.
doi:10.1109/22.310591

6. Becksa, T. and I. Wolff, "Analysis of 3-D metallization structures by a fullwave spectral-domain technique," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 12, 2219-2227, 1992.
doi:10.1109/22.179883

7. Yang, Y. H. and G. N. Alexopoulos, "Basic blocks for high-frequency interconnects," IEEE Trans. Microw. Theory Tech., Vol. 36, No. 8, 1258-1264, 1988.
doi:10.1109/22.3667

8. Wight, S. J., J. W. Chudobiak, and V. Makios, "A microstrip and stripline crossover structure," IEEE Trans. Microw. Theory Tech., Vol. 24, No. 5, 270-270, 1976.
doi:10.1109/TMTT.1976.1128838

9. Yao, J., C. Lee, and P. S. Yeo, "Microstrip branch-line couplers for crossover application," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 1, 87-92, 2011.
doi:10.1109/TMTT.2010.2090695

11. Djerafi, T. and K. Wu, "60 GHz substrate integrated waveguide crossover structure," European Microwave Conference (EuMC), 1014-1017, 2009.

12. Guntupalli, A., T. Djerafi, and K. Wu, "Ultra-compact millimeter-wave substrate integrated waveguide crossover structure utilizing simultaneous electric and magnetic coupling," IEEE/MTTS Int. Microw. Symp. Dig., 1-3, 2009.

13. Han, S., K. Zhou, J. Zhang, C. Zhou, and W. Wu, "Novel substrate integrated waveguide filtering crossover using orthogonal degenerate modes," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 9, 803-805, 2017.
doi:10.1109/LMWC.2017.2734842

14. Abbosh, A., S. Ibrahi, and M. Karim, "A wideband single-layer crossover using substrate integrated waveguide to grounded coplanar waveguide transition," Microw. Opt. Technol. Lett., Vol. 59, No. 11, 2757-2762, 2017.
doi:10.1002/mop.30814

15. Zhou, Y., K. Zhou, J. Zhang, C. Zhou, and W. Wu, "Miniaturized substrate integrated waveguide filtering crossover," IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 1-3, 2017.