Vol. 83
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-29
Nonlinear Distortion Correction for Single Pixel Conical Scanning Radiometric Imaging System at W-Band
By
Progress In Electromagnetics Research Letters, Vol. 83, 65-70, 2019
Abstract
Conical scanning radiometric imaging system is good at large field view but suffers from visual nonlinear distortion. The distortion is caused by azimuth and elevation sampling in sphere coordinate, especially for short range and large views. An outdoor experiment is carried out on a building, and the raw image is obtained with obvious distortion. The key to correct distortion is solving the range in relationship between sphere coordinate and Cartesian coordinate. For the a specific building, it is approximately treated as a plane object, and its height is assumed known to solve the range and parameters for plane fitting. Once the coordinates of all pixels are determined, the object is represented in Cartesian coordinate, and the nonlinear distortion is corrected. If any size information for object is unknown, an arbitrary plane is also competent for distortion correction. The difference is that the correcting result is a projection onto this plane instead of real location. However, the projection is also compatible with human vision.
Citation
Xuan Lu, Zelong Xiao, and Taiyang Hu, "Nonlinear Distortion Correction for Single Pixel Conical Scanning Radiometric Imaging System at W-Band," Progress In Electromagnetics Research Letters, Vol. 83, 65-70, 2019.
doi:10.2528/PIERL19011804
References

1. Yujiri, L., "Passive millimeter wave imaging," 2006 IEEE MTT-S International Microwave Symposium Digest, 98-101, 2006.
doi:10.1109/MWSYM.2006.249938

2. Appleby, R., "Passive millimetre-wave imaging and how it differs from terahertz imaging," Philosophical Transactions of the Royal Society of London Series a Mathematical Physical and Engineering Sciences, Vol. 362, 379-392, 2004.
doi:10.1098/rsta.2003.1323

3. Viegas, C., B. Alderman, J. Powell, H. Liu, H. Wang, and R. Sloan, "Millimeter wave radiometers for applications in imaging and nondestructive testing," 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT), 1-4, 2015.

4. Isiker, H., C. Ozdemir, and I. Unal, "Millimeter-wave band radiometric imaging experiments for the detection of concealed objects," 2015 IEEE Radar Conference, 23-26, 2015.
doi:10.1109/RadarConf.2015.7411847

5. Chen, H.-M., S. Lee, R. M. Rao, M. A. Slamani, and P. K. Varshney, "Imaging for concealed weapon detection: a tutorial overview of development in imaging sensors and processing," IEEE Signal Processing Magazine, Vol. 22, No. 2, 52-61, 2005.
doi:10.1109/MSP.2005.1406480

6. Cui, G., C. Zhao, H.Wu, X.Wei, and Z. Li, "Millimeter wave passive imaging system using reflector antenna," 2015 IET International Radar Conference, 1-5, 2015.

7. Wang, W., A. E. Fathy, and X. Wang, "Novel antenna using substrate integrated waveguide for passive millimeter-wave focal plane array imaging," 2014 IEEE International Wireless Symposium, 1-4, 2014.

8. Lukin, K. A., et al. "Coherent radiometric imaging in range-azimuth plane using antennas with beam synthesizing," 11th European Radar Conference, 45-48, 2014.

9. Lee, D., S. Yeom, J. Son, and S. Kim, "Image segmentation of concealed objects detected by passive millimeter wave imaging," 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves, 1-2, 2009.

10. Kholmatov, A., et al. "Passive millimeter-wave band data acquisition setup and associated image processing techniques," 21st Signal Processing and Communications Applications Conference (SIU), 1-4, 2013.

11. Lu, X., Z. Xiao, J. Xu, and H. Huo, "3D millimeter wave image by combined active and passive system," Progress In Electromagnetics Research L, Vol. 50, 7-12, 2014.
doi:10.2528/PIERL14090402

12. Lu, X., F. Peng, G. Li, Z. Xiao, and T. Hu, "Object segmentation for linearly polarimetric passive millimeter wave images based on principal component analysis," Progress In Electromagnetics Research M, Vol. 61, 169-176, 2017.
doi:10.2528/PIERM17080804

13. Lu, X., Z. Xiao, and J. Xu, "Linear polarization characteristics for terrain identification at millimeter wave band," Chinese Optics Letters, Vol. 12, No. 10, 1012011-1012015, 2014.