Vol. 79
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-03-21
Ac Corrosion on Pipelines: Influence of the Surface Layer Soil Resistivity in Evaluating the Current Density by a Probabilistic Approach
By
Progress In Electromagnetics Research M, Vol. 79, 175-186, 2019
Abstract
The context of the paper is the 50-60 Hz electromagnetic interference between AC power lines/electrified railway lines and pipelines; we present here an algorithm for the evaluation of the AC induced current density, flowing through the holidays (defects) in the pipeline insulating coating, from pipe to soil by modelling this last one as a two-layer structure. Moreover, the value of holidays area is treated as a random variable (as actually is from field experience) so allowing to associate a certain level of probability to the event of exceeding the AC current density limit, established by standards, for AC corrosion risk. The results show that the surface layer soil resistivity is a very significant factor influencing the level of AC induced current density.
Citation
Giovanni Lucca, "Ac Corrosion on Pipelines: Influence of the Surface Layer Soil Resistivity in Evaluating the Current Density by a Probabilistic Approach," Progress In Electromagnetics Research M, Vol. 79, 175-186, 2019.
doi:10.2528/PIERM19011003
References

1. CEOCOR A.C. Corrosion on Cathodically Protected Pipelines. Guidelines for Risk Assessment and Mitigation Measures, Published by APCE Association for the Protection against Electrolytic Corrosion, 2001.

2. CIGRE "AC corrosion on metallic pipelines due to interference from AC power lines - Phenomenon, modelling and countermeasures," CIGRE, 2006.

3. EN 15280 "Evaluation of a.c. corrosion likelihood of buried pipelines applicable to cathodically protected pipelines,", 2013.

4. ITU-T "Directives concerning the protection of telecommunication lines against harmful effects from electric power and electrified railway lines," Capacitive, Inductive and Conductive Coupling: Physical Theory and Calculation Methods, Vol. III, ITU, 1989.

5. CIGRE "Guide on the influence of high voltage AC power systems on metallic pipeline," CIGRE, 1995.

6. EPRI "Mutual design considerations for overhead AC transmission lines and gas transmission pipelines," Engineering Analysis, Vol. 1, EPRI, 1978.

7. EPRI "Power line fault current coupling to nearby natural gas pipelines," Analytic Methods and Graphical Techniques, Vol. 1, EPRI, 1987.

8. Dawalibi, F. P. and R. D. Southey, "Analysis of electrical interference from power lines to gas pipelines Part I: Computation methods," IEEE Trans. on Power Deliv., Vol. 4, No. 3, 1840-1846, 1989.
doi:10.1109/61.32680

9. Sunde, E. D., Earth Conduction Effects in Transmission Systems, 1st Ed., D. Van Nostrand, 1949.

10. Micu, D. D., L. Czumbil, G. Christoforidis, and A. Ceclan, "Layer recurrent neural network solution for an electromagnetic interference problem," IEEE Trans. on Magnetics, Vol. 47, No. 5, 1410-1413, 2011.
doi:10.1109/TMAG.2010.2091494

11. Micu, D. D., L. Czumbil, G. C. Christoforidis, A. Ceclan, and D. Stet, "Evaluation of induced AC voltages in underground metallic pipeline," COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 31, No. 4, 1133-1143, 2012.
doi:10.1108/03321641211227375

12. Micu, D. D., G. C. Christoforidis, and L. Czumbil, "AC Interference on pipelines due to double circuit power lines: A detailed study," Electric Power Systems Research, Vol. 103, 1-8, 2013.
doi:10.1016/j.epsr.2013.04.008

13. Cristofolini, A., A. Popoli, and L. Sandrolini, "A comparison between Carson’s formulae and a 2D FEM approach for the evaluation of AC interference caused by overhead power lines on buried metallic pipelines," Progress In Electromagnetics Research C, Vol. 79, 39-48, 2017.
doi:10.2528/PIERC17080501

14. Ouadah, M., O. Touhami, R. Ibtiouen, A Bouzida, S. Bouyegh, D. Allou, and A. Haddad, "Pipelines corrosion due to the electromagnetic pollution caused by the high voltage power lines," 4ème Conférence Internationale des Energies Renouvelables (CIER-2016), Proceedings of Engineering and Technology - PET, Vol. 17, 97-101, Hammamet, Tunisia, December 20–22, 2016.

15. Adedeji, K. B., A. A. Ponnle, B. T. Abe, A. A. Jimoh, A. M. Abu-Mahfouz, and Y. Hamam, "AC induced corrosion assessment of buried pipelines near HVTLs: A case study of South Africa," Progress In Electromagnetics Research B, Vol. 81, 45-61, 2018.
doi:10.2528/PIERB18040503

16. Tagg, G. F., Earth Resistances, 1-10, George Newnes Limited, 1964.

17. Kižlo, M. and A. Kanbergs, "Research of the parameter changes of the grounding system," 2009 World Non-Grid-Connected Wind Power and Energy Conference, Nanjing, China, September 24–26, 2009.

18. Kižlo, M. and A. Kanbergs, "The causes of the parameters changes of soil resistivity," Scientific Proceedings of Riga Technical University, The 50th International Scientific Conference Power and Electrical Engineering, 43-46, October 2009.

19. Hill, R. J., S. Brillante, C. R. de Souza, et al. "Electrical material data for railway track transmission line parameter studies," IEE Proc. Electr. Power Appl., Vol. 146, No. 1, 60-68, 1999.
doi:10.1049/ip-epa:19990194

20. Andolfato, R., L. Fellin, and R. Turri, "Nuovi approcci per la valutazione della sicurezza degli impianti di terra a frequenza industriale," Atti della 97ma Riunione Annuale AEI, Baveno, Italy, May 1997.

21. Andolfato, R., L. Fellin, and R. Turri, "Safety assessment of earthing systems at power frequency," Proc. Conf. ERA (Earthing Solutions - Standard Safety and Good Practice), Solihull-Birmingham, UK, June 1997.

22. Lucca, G., L. Di Biase, and M. Moro, "A. C. corrosion on buried pipelines: A probabilistic approach," Proc. of 6th CEOCOR Int. Congr. Giardini Naxos, Italy, 2003.