Vol. 79
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-02-21
Ship Detection in SAR Image Based on Information Geometry Method
By
Progress In Electromagnetics Research M, Vol. 79, 81-90, 2019
Abstract
Aiming at the problem of high false alarm rate with respect to adaptive threshold in the ship detection from synthetic aperture radar (SAR) images, a novel strategy increasing robustness when using local adaptive threshold is proposed. In this article, we establish a fusion detection model based on a combination of the information geometry and surface geometry. Information geometry from a metric viewpoint can increase the contrast between targets and clutter in SAR image. Local surface feature gives a brief application of adaptive threshold method in ship detection from SAR images by means of the constant false-alarm-rate. Experiments indicate that the proposed geometry-based approach can effectively detect ship targets from complex background SAR images by using the method of fusion processing.
Citation
Xiangxiang Yang, Meng Yang, Yinhua Zhang, and Gong Zhang, "Ship Detection in SAR Image Based on Information Geometry Method," Progress In Electromagnetics Research M, Vol. 79, 81-90, 2019.
doi:10.2528/PIERM19010102
References

1. Gao, G., S. Gao, J. He, and G. Li, "Ship detection using compact polarimetric SAR based on the notch filter," IEEE Trans. Geosci. Remote Sens., Vol. 56, No. 9, 5380-5393, 2018.
doi:10.1109/TGRS.2018.2815582

2. Jiao, J., Y. Zhang, H. Sun, X. Yang, X. Gao, W. Hong, K. Fu, and X. Sun, "A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection," IEEE Access, Vol. 6, 20881-20892, 2018.
doi:10.1109/ACCESS.2018.2825376

3. Li, T., Z. Liu, L. Ran, and R. Xie, "Target detection by exploiting superpixel-level statistical dissimilarity for SAR imagery," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 4, 562-566, 2018.
doi:10.1109/LGRS.2018.2805714

4. Li, T., Z. Liu, R. Xie, and L. Ran, "An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 11, No. 1, 184-194, 2018.
doi:10.1109/JSTARS.2017.2764506

5. Odysseas, P., A. Alin, and B. David, "Superpixel-level CFAR detectors for ship detection in SAR imagery," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 9, 1397-1401, 2018.
doi:10.1109/LGRS.2018.2838263

6. Ai, J., X. Yang, J. Song, Z. Dong, L. Jia, and F. Zhou, "An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery," IEEE J. Oceanic Eng., Vol. 43, No. 1, 267-279, 2018.
doi:10.1109/JOE.2017.2768198

7. Amari, S., Information Geometry and Its Application, Springer, 2016.
doi:10.1007/978-4-431-55978-8

8. Nielsen, F. and R. Bhatia, Matrix Information Geometry, Springer-Verlag, 2013.
doi:10.1007/978-3-642-30232-9

9. Forbes, C., M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, Wiley, 2010.
doi:10.1002/9780470627242

10. Arwini, K. A. and C. T. J. Dodson, Information Geometry - Near Randomness and Near Independence, Springer-Verlag, 2008.

11. Xue, J.-H. and D. M. Titterington, "T-tests, F-tests and Otsu’s methods for image thresholding," IEEE Trans. Image Process., Vol. 20, No. 8, 2392-2396, 2011.
doi:10.1109/TIP.2011.2114358

12. Fabbrini, L., M. Greco, M. Messina, and G. Pinelli, "Improved edge enhancing diffusion filter for speckle-corrupted images," IEEE Geosci. Remote Sens. Lett., Vol. 11, No. 1, 119-123, 2014.
doi:10.1109/LGRS.2013.2247377