Vol. 82
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-13
Long Term Irradiance Statistics for Optical GEO Downlinks: Validation with ARTEMIS Experimental Measurements
By
Progress In Electromagnetics Research Letters, Vol. 82, 89-94, 2019
Abstract
In this letter, a methodology for the generation of received irradiance/power time series for a GEO downlink concentrated on small aperture receiver terminals is reported. The synthesizer takes into account the atmospheric phenomena that degrade the propagation of the optical signal and especially the turbulence effects. For modeling the scintillation effects, Kolmogorov spectrum is assumed, and the Rytov's approximation under weak turbulence is also used. The time series are generated using the theory of stochastic differential equations. Finally, the proposed synthesizer is compared in terms of first order statistics with experimental data from the ARTEMIS GEO optical satellite link campaign with very good agreement.
Citation
Theodore T. Kapsis, Nikolaos K. Lyras, and Athanasios Panagopoulos, "Long Term Irradiance Statistics for Optical GEO Downlinks: Validation with ARTEMIS Experimental Measurements," Progress In Electromagnetics Research Letters, Vol. 82, 89-94, 2019.
doi:10.2528/PIERL18122105
References

1. Kaushal, H. and G. Kaddoum, "Optical communication in space: Challenges and mitigation techniques," IEEE Comm. Surv. & Tut., Vol. 19, No. 1, 57-96, 2017.
doi:10.1109/COMST.2016.2603518

2. Hemmati, H., Near-Earth Laser Communications, CRC Press, 2009.

3. Lyra, N. K., et al. "Cloud attenuation statistics prediction from Ka-band to optical frequencies: Integrated liquid water content field synthesizer," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 1, 319-328, Jan. 2017.
doi:10.1109/TAP.2016.2630602

4. Lyras, N. K., et al. "Optimum monthly based selection of ground stations for optical satellite networks," IEEE Communications Letters, Vol. 22, No. 6, 1192-1195, Jun. 2018.
doi:10.1109/LCOMM.2018.2819174

5. Andrews, L. and R. Phillips, Laser Beam Propagation through Random Media, SPIE Press, 2005.
doi:10.1117/3.626196

6. Alonso, A., M. Reyes, and Z. Sodnik, "Performance of satellite-to-ground communications link between ARTEMIS and the optical ground station," Proc. SPIE 5572, Optics in Atmospheric Propagation and Adaptive Systems VII, Vol. 5572, 372, 2004.
doi:10.1117/12.565516

7. Toyoshima, M., et al. "Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 2, 842-850, Feb. 2005.
doi:10.1109/TAP.2004.841329

8. Yura, H. T. and W. G. McKinley, "Aperture averaging of scintillation for space-to-ground optical communications," Applied Optics, Vol. 22, No. 11, 1608-1609, 1983.
doi:10.1364/AO.22.001608

9. Shao, Y., "The fractional Ornstein-Uhlenbeck process as a representation of homogeneous eulerian velocity turbulence," Physica D, Vol. 83, No. 4, 461-477, 1995.
doi:10.1016/0167-2789(95)00051-5