Vol. 78
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-31
Solution of Wideband Scattering Problems Using Hierarchical Ultra-Wideband Characteristic Basis Functions
By
Progress In Electromagnetics Research M, Vol. 78, 125-133, 2019
Abstract
In this paper, a hierarchical ultra-wideband characteristic basis function method (HUCBFM) is presented for high-precision analysis of wideband scattering problems. Unlike existing improved ultra-wideband characteristics basis function method (IUCBFM), HUCBFM reduces the number of characteristic basis functions (CBFs) necessary to express a current distribution. This reduction is achieved by combining primary CBFs (PCBFs) with the secondary level CBFs (SCBFs) to form a single hierarchical ultra-wideband characteristic basis function (HUCBF). As HUCBF incorporates the effects of PCBFs and SCBFs, the accuracy does not change significantly compared to that obtained by IUCBFM. Furthermore, the efficiencies of constructing the CBFs and filling the reduced matrix are improved. Numerical examples verify and demonstrate that the proposed method is credible both in terms of accuracy and efficiency.
Citation
Wenyan Nie, and Zhonggen Wang, "Solution of Wideband Scattering Problems Using Hierarchical Ultra-Wideband Characteristic Basis Functions," Progress In Electromagnetics Research M, Vol. 78, 125-133, 2019.
doi:10.2528/PIERM18121802
References

1. Harrington, R. F., Field Computation by Method of Moments, IEEE Press, 1992.

2. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Ant. Propag. Mag., Vol. 53, No. 3, 7-12, 1993.
doi:10.1109/74.250128

3. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

4. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

5. Burke, G. J., "Using model based parameter estimation to increase the efficiency of computing electromagnetic transfer functions," IEEE Trans. Mag., Vol. 25, No. 4, 2807-2809, 1988.
doi:10.1109/20.34291

6. Newman, E. H., "Generation of wide band from the method of moments by interpolating the impedance matrix," IEEE Trans. Antennas Propag., Vol. 36, No. 12, 1820-1824, 1988.
doi:10.1109/8.14404

7. Chao, T., Y. J. Xie, and Y. Y. Wang, "Fast solutions of wide-band RCS pattern of objects using MLFMM with the best uniform approximation," Journal of Electronics & Information Technology, Vol. 31, No. 11, 2772-2775, 2009.

8. Reddy, C. J., M. D. Deshpande, and C. R. Cockrell, "Fast RCS computation over a frequency band using method of moments in conjunction with asymptotic evaluation technique," IEEE Trans. Antennas Propag., Vol. 46, No. 8, 1229-1233, 1998.
doi:10.1109/8.718579

9. Wang, X., S. X. Gong, and J. L. Guo, "Fast and accurate wide-band analysis of antennas mounted on conducting platform using AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4624-4633, 2011.
doi:10.1109/TAP.2011.2165495

10. Nie, X. C., N. Yuan, L. W. Li, and Y. B. Gan, "Fast analysis of RCS over a frequency band using pre-corrected FFT/AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3526-3533, 2008.
doi:10.1109/TAP.2008.2005455

11. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microw. Opt. Technol. Lett., Vol. 36, No. 2, 95-100, 2003.
doi:10.1002/mop.10685

12. Degiorgi, M., G. Tiberi, and A. Monorchio, "An SVD-based method for analyzing electromagnetic scattering from plates and faceted bodies using physical optics bases," IEEE Antennas and Propagation Society International Symposium, 147-150, Jul. 2005.

13. Tanaka, T., Y. Inasawa, Y. Nishioka, and H. Miyashita, "Improved primary characteristic basic function method for monostatic radar cross section analysis of specific coordinate plane," IEICE Transactions on Electronics, Vol. E99-C, No. 1, 28-35, 2016.
doi:10.1587/transele.E99.C.28

14. Tanaka, T., Y. Inasawa, Y. Nishioka, and H. Miyashita, "Improved primary-characteristic basis function method considering higher-order multiple scattering," IEICE Transactions on Electronics, Vol. E100-C, No. 1, 45-51, 2017.
doi:10.1587/transele.E100.C.45

15. Tanaka, T., Y. Inasawa, Y. Nishioka, and H. Miyashita, "Accuracy improvement of characteristic basis function method by using multilevel approach," IEICE Transactions on Electronics, Vol. E101-C, No. 2, 96-103, 2018.
doi:10.1587/transele.E101.C.96

16. Li, C. L., Y. F. Sun, and G. H. Wang, "Merged characteristic basis function method for analysis of electromagnetic scattering characteristics from conducting targets," Progress In Electromagnetics Research Letters, Vol. 69, 15-21, 2017.
doi:10.2528/PIERL17031501

17. Maaskant, R., R. Mittra, and A. G. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3440-3451, 2008.
doi:10.1109/TAP.2008.2005471

18. Wang, X., D. H. Werner, and J. P. Turpin, "Investigation of scattering properties of large-scale aperiodic tilings using a combination of the characteristic basis function and adaptive integral methods," IEEE Trans. Antennas Propag., Vol. 61, No. 6, 3149-3160, 2013.
doi:10.1109/TAP.2013.2250474

19. Degiorgi, M., G. Tiberi, and A. Monorchio, "Solution of wide band scattering problems using the characteristic basis function method," IET Microwaves Antennas and Propagation, Vol. 6, No. 1, 60-66, 2012.
doi:10.1049/iet-map.2011.0309

20. Nie, W. Y. and Z. G. Wang, "Solution for wide band scattering problems by using the improved ultra-wide band characteristic basis function method," Progress In Electromagnetics Research Letters, Vol. 58, 37-43, 2016.
doi:10.2528/PIERL15080801

21. Nie, W. Y. and Z. G. Wang, "Analysis of wide band scattering from objects using the adaptive improved ultra-wide band characteristic basis functions," Progress In Electromagnetics Research Letters, Vol. 60, 45-51, 2016.
doi:10.2528/PIERL16033003

22. Koc, S. N. and A. Köksal, "Wideband analysis of planar scalable antennas and PEC bodies using CBFM," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 24, 1652-1662, 2016.
doi:10.3906/elk-1401-48

23. Nie, W. Y. and Z. G. Wang, "Efficient computation of wideband RCS using singular value decomposition enhanced improved ultrawideband characteristic basis function method," International Journal of Antennas and Propagation, Vol. 2016, Article ID 6367205, 1–6, 2016.

24. Yeo, J., S. Köksoy, V. V. S. Prakash, and R. Mittra, "Efficient generation of method of moments matrices using the characteristic function method," IEEE Trans. Antennas Propag., Vol. 52, No. 12, 3405-3410, 2004.
doi:10.1109/TAP.2004.836418