Vol. 80
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-04
Flexible UWB AMC Antenna for Early Stage Skin Cancer Identification
By
Progress In Electromagnetics Research M, Vol. 80, 71-81, 2019
Abstract
This work involves designing an antenna that meets the requirements of radar systems. The associated technology, which was for a long time reserved for the military field, is now available in the civil field, as well as in the biomedical sector for the development of ``monitoring'' systems allowing to monitor the state of health of a patient in a non-invasive way. The goal of this article is to design a wearable textile antenna to detect cancerous tumors of a patient without direct contact with the skin, taking into account the electromagnetic waves directed towards the human body due to the difference between the dielectric constants of healthy and unhealthy tissues. Here we present a miniature AMC antenna of rectangular shape that satisfies the UWB characteristics in terms of bandwidth and reflection coefficient. The proposed AMC antenna operates in X-frequency band, (8-12 GHz). Using a model of dielectric artificial skin, we have simulated the specific absorption rate on the human body in order to better respect the FCC standards allowed 1.6 W/kg averaged to 1g of human tissue.
Citation
Ameni Mersani, Lotfi Osman, and Jean-Marc Ribero, "Flexible UWB AMC Antenna for Early Stage Skin Cancer Identification," Progress In Electromagnetics Research M, Vol. 80, 71-81, 2019.
doi:10.2528/PIERM18121404
References

1. Federal Communications Commission "First report and order,", Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems, 2002, http://www.fcc.gov.

2. Neha, A. K., "Wearable antenna for skin cancer detection," 2nd International Conference on Next Generation Computing Technologies (NGCT-2016), 2016.

3. Natalia, R., "Ultra-Wide Band (UWB) and health applications," IREAN Research Workshop, Virginia Tech, 2005.
doi:10.1109/JSEN.2011.2117417

4. Caratelli, D., A. Massaro, R. Cingolani, and A. G. Yarovoy, "Accurate time-domain modeling of reconfigurable antenna sensors for non-invasive melanoma skin cancer detection," IEEE Sensors Journal, Vol. 12, No. 3, 635-643, Mar. 2012.
doi:10.1109/ICCPCT.2013.6528879

5. Jaleel, J. A., S. Salim, and R. B. Aswin, "Computer aided detection of skin cancer," International Conference on Circuits, Power and Computing Technologies (ICCPCT), 1137-1142, Mar. 2013.

6. Sievenpiper, D., L. Zhang, R. Broas, N. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2059-2074, Nov. 1999.

7. Khor, W. C., M. E. Bialkowski, A. Abbosh, N. Seman, and S. Crozier, "An ultra-wideband microwave imaging system for breast cancer detection," International Symposium on Antennas and Propagation ISAP, 1-5, 2006.
doi:10.1118/1.597312

8. Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, No. 4, 547-550, Apr. 1994.

9. Chaudhary, S. S., R. K. Mishra, R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric-properties of normal and malignant human breast tissues at radiowave and microwave-frequencies," Indian J. Biochem. Biophys., Vol. 21, No. 1, 76-79, 1984.

10. Online: http://www.medisite.fr/dictionnaire-des-maladies-maladie-des-enfants-de-la-lune-xeroderma-pigmentosum.453831.5.html.
doi:10.1109/LAWP.2013.2285121

11. Prakash, P., M. P. Abegaonkar, A. Basu, and S. K. Koul, "Gain enhancement of a CPW-fed monopole antenna using polarization insensitive AMC structure," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1315-1318, 2013.

12. Wang, F. and T. Arslan, "A wearable ultra-wideband monopole antenna with flexible artificial magnetic conductor," Loughborough Antennas & Propagation Conference (LAPC), 2016.
doi:10.1109/TAP.2016.2607761

13. Malekpoor, H. and S. Jam, "Improved radiation performance of low profile printed slot antenna using wideband planar AMC surface," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 11, 4626-4638, 2016.
doi:10.1109/LAWP.2013.2245093

14. Hadarig, R. C., M. E. de Cos, and F. L. Heras, "Novel miniaturized artificial magnetic conductor," IEEE Antennas Wireless Propag. Lett., Vol. 12, 174-177, 2013.

15. Abbosh, A. M., "Directive antenna for ultrawideband medical imaging systems," International Journal of Antennas and Propagation, Vol. 2008, 6 pages, Article ID 854012, 2008.

16. Shanwar, A. R. and N. S. Othman, "UWB printed antenna for medical applications," Proc. of the 2017 IEEE Region 10 Conference (TENCON), Malaysia, November 5–8, 2017.

17. Abdelhamid, M. M. and A. M. Allam, "Detection of lung cancer using ultra wide band antenna," 2016 Loughborough Antennas & Propagation Conference (LAPC), 2016.

18. Rahim, H. A., et al., "Measurement of dielectric properties of textile substrate," Jurnal Teknologi (Sciences & Engineering), Vol. XX, No. 1, 1-6, 2015.
doi:10.1049/iet-map.2013.0658

19. Sun, Y., T. I. Yuk, and S. W. Cheung, "Design of a textile ultra-wideband antenna with stable performance for body-centric wireless communications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 15, 1363-1375, 2014, doi:10.1049/iet-map.2013.0658.

20. Mantash, M., A.-C. Tarot, S. Collardey, and K. Mahdjoubi, "Investigation of flexible textile antennas and AMC reflector," International Journal of Antennas and Propagation, Vol. 2012, 10 pages, Article ID 236505, 2012, doi:10.1155/2012/23650.