Vol. 80
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-18
Vertical Polarized 1 × 3 Series-Fed Linear Array with Gain and Front-to-Back Ratio Enhancement for Airborne SAR-X Applications
By
Progress In Electromagnetics Research M, Vol. 80, 169-179, 2019
Abstract
In this paper, a gain and front-to-back ratio (FTBR) enhanced vertically polarized 1 × 3 series-fed linear array for Airborne SAR-X application has been presented. The proposed antenna prototype is designed at 9.65 GHz X-band. The proposed antenna design consists of a square radiating patch, substrate, quarter wave transformer 50 Ω matched transformer, and series feed line (SFL). The simulated antenna prototype is fabricated and successfully measured. The final antenna prototype has a dimension of 80 × 50 × 1.587 mm3 or 2.574 × 1.6087 × 0.051λ03 (Free space wavelength) or 3.256 × 2.035 × 0.0645λg3 (Guided wavelength) at 9.65 GHz. The results indicate that the proposed antenna prototype yields an impedance bandwidth >140 MHz (from 9.591 to 9.712 GHz) defined by S11<-10 dB. The low profile/cost antenna prototype has a fully directional radiation pattern with measured gain up to 12.2 dBi and estimated radiation efficiency of 89%, respectively. A brass plate with 0.8 mm thickness has been fabricated to attach to the antenna ground plane for improving FTBR of more than 30 dB. All these features make the proposed antenna array have good potential applications in X-band system, especially in 9.65\,GHz Airborne SAR systems. The aperture of the antenna is 80 mm x 50 mm, which equals 31 wavelengths at 9.65 GHz.
Citation
Venkata Kishore Kothapudi, and Vijay Kumar, "Vertical Polarized 1 × 3 Series-Fed Linear Array with Gain and Front-to-Back Ratio Enhancement for Airborne SAR-X Applications," Progress In Electromagnetics Research M, Vol. 80, 169-179, 2019.
doi:10.2528/PIERM18121203
References

1. Skolnik, M. I., Radar Handbook, McGraw-Hill, 1970.

2. Imbriale, W. A., S. Gao, and L. Boccia, Space Antenna Handbook, Wiley, 2012.
doi:10.1002/9781119945147

3. Jung, Y.-B., I. Yeom, and C. W. Jung, "Centre-fed series array antenna for k-/ka-band electromagnetic sensors," IET Microw. Antennas Propag., Vol. 6, No. 5, 588-593, Apr. 2012.
doi:10.1049/iet-map.2011.0355

4. Hajian, M., J. Zijderveld, A. A. Lestari, and L. P. Ligthart, "Analysis, design and measurement of a series-fed microstrip array antenna for X-band INDRA: The Indonesian maritime radar," Proc. 3rd Eur. Conf. Antennas Propag., 1154-1157, Berlin, Germany, Apr. 2009.

5. Huque, T., K. Hossain, S. Islam, and A. Chowdhury, "Design and performance analysis of microstrip array antennas with optimum parameters for X-band applications," Int. J. Adv. Comput. Sci. Applicat., Vol. 2, No. 4, 81-87, 2011.

6. Hautcoeur, J., E. M. Cruz, J. Bartholomew, J. Sarrazin, Y. Mahe, and S. Toutain, "Low-cost printed antenna array built with hybrid feed for urban microwave links," IET Microw. Antennas Propag., Vol. 4, No. 9, 1320-1326, Sep. 2010.
doi:10.1049/iet-map.2009.0383

7. Iizuka, H., K. Sakakibara, T. Watanabe, K. Sato, and K. Nishikawa, "Millimeter-wave microstrip array antenna with high efficiency for automotive radar systems," R&D Rev. Toyota CRDL, Vol. 37, No. 2, 7-12, 2002.

8. Barba, M., "A high-isolation, wideband and dual-linear polarization patch antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1472-1476, May 2008.
doi:10.1109/TAP.2008.922889

9. Lee, B., S. Kwon, and J. Choi, "Polarization diversity microstrip base station antenna at 2 GHz using t-shaped aperture-coupled feeds," IEE Proc. Microw. Antennas Propag., Vol. 148, No. 5, 334-338, Oct. 2001.
doi:10.1049/ip-map:20010730

10. Li, B., Y.-Z. Yin, W. Hu, Y. Ding, and Y. Zhao, "Wideband dual-polarized patch antenna with low cross polarization and high isolation," IEEE Antennas Wireless Propag. Lett., Vol. 11, 427-430, Apr. 2012.

11. Afzalzadeh, R. and R. N. Karekar, "X-band directive single microstrip patch antenna using dielectric parasite," Electronics Letters, Vol. 28, No. 1, 17-19, 1992.
doi:10.1049/el:19920011

12. Andrenko, A. S., I. V. Ivanchenko, D. I. Ivanchenko, et al. "Active broad X-band circular patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 529-533, 2006.
doi:10.1109/LAWP.2005.860200

13. Coulibaly, Y., T. A. Denidni, and H. Boutayeb, "Broadband microstrip-fed dielectric resonator antenna for X-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 341-345, 2008.
doi:10.1109/LAWP.2008.921326

14. Verma, A. and N. Srivastava, "Analysis and design of rectangular microstrip antenna in X band," MIT International Journal of Electronics and Communication Engineering, Vol. 1, No. 1, 31-35, 2011.

15. Aggarwal, K. and A. Garg, "A S-shaped patch antenna for X-band wireless/microwave applications," International Journal of Computing and Corporate Research, Vol. 2, No. 2, 14, 2012.

16. Harrabi, A., T. Razban, Y. Mahe, L. Osman, and A. Gharsallah, "Wideband patch antenna for x-band applications," PIERS Proceedings, Stockholm, Sweden, Aug. 12–15, 2013.

17. Frezza, F., L. Pajewski, E. Piuzzi, C. Ponti, and G. Schettini, "Radiation-enhancement properties of an X-band Woodpile EBG and its application to a planar antenna," International Journal of Antennas and Propagation, Vol. 2014, Article ID 729187, 15 pages, 2014.

18. Kothapudi, V. K. and V. Kumar, "A single layer s/x-band series-fed shared aperture antenna for SAR applications," Progress In Electromagnetics Research C, Vol. 76, 207-219, 2017.
doi:10.2528/PIERC17070104

19. Kothapudi, V. K. and V. Kumar, "Compact 1×2 and 2×2 dual polarized series-fed antenna array for X-band airborne synthetic aperture radar applications," Journal of Electromagnetic Engineering and Science, Vol. 18, No. 2, 117-128, 2018.
doi:10.26866/jees.2018.18.2.117

20. Xu, H.-X., G.-M. Wang, Y.-Y. Lv, M.-Q. Qi, X. Gao, S. Ge, A. Hasnain, and M. N. Taib, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409

21. Liu, J., Y. Cheng, Y. Nie, and R. Gong, "Metamaterial extends microstrip antenna," Microwaves & Rf., Vol. 52, No. 12, 69-73, 2013.

22. Rogers Corporation, Available at: www.rogerscorp.com.

23. Computer simulation technology version, Wellesley Hills, MA, 2016, Available at: www.cst.com.