Vol. 82
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-02-20
Design of a Novel Multi-Layer Wideband Bandpass Filter with a Notched Band
By
Progress In Electromagnetics Research Letters, Vol. 82, 9-16, 2019
Abstract
A wideband filter with a notched band is presented. The proposed filter is formed by cascading three coupling units, and each coupling unit is composed of two curved T-shaped microstrip patches at the top and bottom layers and a circular coupling slot at the mid layer. Overlapping three coupling units could result in a wideband filter with a tunable notched band. To analyse the resonance characteristics, the equivalent circuit model is presented. The notched frequency is 5.8 GHz, and within the passband, the insertion and return losses are better than -2 dB and -15 dB, respectively. The group delays are 0.08 ns and 0.12 ns correspondingly, and the upper stopband reaches 15 GHz. The multi-layer structure leads to a compact size and tight coupling characteristics, and the feasibility and excellent performance of the design is verified.
Citation
Xiao-Chun Ji, Wu-Sheng Ji, Li-Ying Feng, Ying-Yun Tong, and Zhi-Yue Zhang, "Design of a Novel Multi-Layer Wideband Bandpass Filter with a Notched Band," Progress In Electromagnetics Research Letters, Vol. 82, 9-16, 2019.
doi:10.2528/PIERL18121101
References

1. Federal Communications Commission "Revision of Part 15 of the Commission’s rules regarding ultra-wideband transmission systems,", Tech. Rep., ET-Docket 98–153, FCC02–48, Apr. 2002.
doi:10.1109/LMWC.2005.859011

2. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 796-798, 2005.

3. Mokhtaari, M., J. Bornemann, and S. Amari, "A modified design approach for compact ultra-wideband microstrip filters," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 20, No. 1, 66-75, 2010.

4. Hao, S. and T. Jiang, "A compact ultra-wideband band-pass filter integrated with dual tunable notch bands," 2016 Progress In Electromagnetic Research Symposium (PIERS), 3492-3494, Shanghai, China, Aug. 8–11, 2016.
doi:10.1109/LMWC.2012.2210395

5. Sarkar, P., R. Ghatak, M. Pal, D. R. Poddar, et al. "Compact UWB bandpass filter with dual notch bands using open circuited stubs," IEEE Microwave & Wireless Components Letters, Vol. 22, No. 9, 453-455, 2012.
doi:10.1109/LMWC.2010.2040212

6. Luo, X., et al., "Compact UWB bandpass filter with ultra narrow notched band," IEEE Microwave & Wireless Components Letters, Vol. 20, No. 3, 145-147, 2010.
doi:10.1109/LMWC.2016.2549700

7. Kumar, S., R. D. Gupta, and M. S. Parihar, "Multiple band notched filter using C-shaped and E-shaped resonator for UWB applications," IEEE Microwave & Wireless Components Letters, Vol. 26, No. 5, 340-342, 2016.
doi:10.1109/TMTT.2006.889150

8. Abbosh, A. and M. Bialkowski, "Design of compact directional couplers for UWB applications," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 2, 189-194, 2007.
doi:10.1109/TMTT.2007.906468

9. Abbosh, A., "Planar bandpass filters for ultra wideband applications," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 10, 2262-2269, 2007.

10. Abbosh, A., M. Bialkowski, and D. Thiel, "Ultra wideband bandpass filter using microstrip-slot couplers combined with dumbbell slots and H-shaped stubs," Proc. Asia-Pacific Microw. Conf., 909-912, Singapore, Dec. 7–10, 2009.

11. Mongia, R., I. Bahl, and P. Bhartia, RF and Microwave Coupled-line Circuits, Vol. 109, 117-119, Artech House, 1999.

12. Pozar, D., Microwave Engineering, 3rd Ed., Wiley, 2005.