1. Lee, W.-S., H.-L. Lee, K.-S. Oh, and J.-W. Yu, "Switchable distance-based impedance matching networks for a tunable HF system," Progress In Electromagnetics Research, Vol. 128, 19-34, 2012.
doi:10.2528/PIER12041205
2. Liu, S.-F., X.-W. Shi, and S.-D. Liu, "Study on the impedance-matching technique for hightemperature superconducting microstrip antennas," Progress In Electromagnetics Research, Vol. 77, 281-284, 2007.
doi:10.2528/PIER07082502
3. Wang, H. and A. Hajimiri, "A CMOS broadband power amplifier with a transformer-based highorder output matching network," IEEE Journal of Solid-State Circuits, Vol. 45, No. 12, December 2010.
doi:10.1109/JSSC.2010.2077171
4. Zhao, Y., et al., "Power-handling capacity and nonlinearity analysis for distributed electronic impedance synthesizer," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 4, 1340-1348, 2018.
doi:10.1109/TCSI.2017.2756020
5. Li, H.-Y., et al., "CPW-fed frequency-reconfigurable slot-loop antenna with a tunable matching network based on ferroelectric varactors," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 614-617, 2015.
doi:10.1109/LAWP.2014.2375334
6. Li, Y., et al., "A compact DVB-H antenna with varactor-tuned matching circuit," Microwave and Optical Technology Letters, Vol. 52, No. 8, 1786-1789, 2010.
doi:10.1002/mop.25317
7. Haitao, Z., G. Huai, and L. Guann-Pyng, "Broad-band power amplifier with a novel tunable output matching network," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3606-3614, 2005.
doi:10.1109/TMTT.2005.858374
8. Firrao, E. L., et al., "Hardware implementation overhead of switchable matching networks," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 64, No. 5, 1152-1163, 2017.
doi:10.1109/TCSI.2016.2644983
9. Barani, N., J. F. Harvey, and K. Sarabandi, "Fragmented antenna realization using coupled small radiating elements," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1725-1735, 2018.
doi:10.1109/TAP.2018.2806397
10. Song, M., et al., "An energy-efficient antenna impedance detection using electrical balance for single-step on-chip tunable matching in wearable/implantable applications," IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 6, 1236-1244, December 2017.
doi:10.1109/TBCAS.2017.2771500
11. Chen, Y. and D. Manteuffel, "A tunable decoupling and matching concept for compact mobile terminal antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1570-1578, April 2017.
doi:10.1109/TAP.2017.2670318
12. Kabiri, Y., P. Gardner, and C. Constantinou, "Injection matched approach for wideband tunable electrically small antennas," IET Microwaves, Antennas & Propagation, Vol. 8, No. 11, 878-886, August 19, 2014.
doi:10.1049/iet-map.2013.0700
13. Im, D. and K. Lee, "Highly linear silicon-on-insulator CMOS digitally programmable capacitor array for tunable antenna matching circuits," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 12, 665-667, December 2013.
doi:10.1109/LMWC.2013.2284776
14. Tang, X., K. Mouthaan, and J. C. Coetzee, "Tunable decoupling and matching network for diversity enhancement of closely spaced antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 268-271, 2012.
doi:10.1109/LAWP.2012.2188773
15. Maktoomi, M. A., M. S. Hashmi, and V. Panwar, "A dual-frequency matching network for FDCLs using dual-band λ/4-lines," Progress In Electromagnetics Research Letters, Vol. 52, 23-30, 2015.
doi:10.2528/PIERL15020405
16. Wang, Z., J. Liu, H. Li, and Y.-Z. Yin, "A UHF RFID antenna using double-tuned impedance matching for bandwidth enhancement," Progress In Electromagnetics Research Letters, Vol. 70, 59-66, 2017.
doi:10.2528/PIERL17070102
17. Du, Z., K. Gong, and J. S. Fu, "A novel compact wide-band planar antenna for mobile handsets," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 613-619, February 2006.
doi:10.1109/TAP.2005.863088
18. Bahl, I. J., Fundamental of RF and Microwave Transistor Amplifier, John Wiley and Sons, Inc., 2009.
doi:10.1002/9780470462348.ch22