Vol. 81
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-01-14
A Novel Antenna Feeding Network with Separately Resonant Frequency and Impedance Matching Tunable Capability
By
Progress In Electromagnetics Research Letters, Vol. 81, 85-91, 2019
Abstract
A novel C-L-L π-type feeding network is presented to tune the working frequency and impedance matching of antenna. Two varactors are used in the tunable feeding network as tunable elements for antenna resonating frequency and impedance matching tuning. The tunable capability of the network is studied, and a patch antenna is used to verify the tunable feeding network. The tunable feeding network is designed, fabricated and measured. The measurement results show that the patch antenna can be tuned from 630 MHz to 1.04 GHz with a maximum impedance bandwidth of 24 MHz of S11 less than -10 dB.
Citation
Linzhi Liu, Qian-Yin Xiang, Dengyao Tian, and Quanyuan Feng, "A Novel Antenna Feeding Network with Separately Resonant Frequency and Impedance Matching Tunable Capability," Progress In Electromagnetics Research Letters, Vol. 81, 85-91, 2019.
doi:10.2528/PIERL18120709
References

1. Lee, W.-S., H.-L. Lee, K.-S. Oh, and J.-W. Yu, "Switchable distance-based impedance matching networks for a tunable HF system," Progress In Electromagnetics Research, Vol. 128, 19-34, 2012.
doi:10.2528/PIER12041205

2. Liu, S.-F., X.-W. Shi, and S.-D. Liu, "Study on the impedance-matching technique for hightemperature superconducting microstrip antennas," Progress In Electromagnetics Research, Vol. 77, 281-284, 2007.
doi:10.2528/PIER07082502

3. Wang, H. and A. Hajimiri, "A CMOS broadband power amplifier with a transformer-based highorder output matching network," IEEE Journal of Solid-State Circuits, Vol. 45, No. 12, December 2010.
doi:10.1109/JSSC.2010.2077171

4. Zhao, Y., et al., "Power-handling capacity and nonlinearity analysis for distributed electronic impedance synthesizer," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 4, 1340-1348, 2018.
doi:10.1109/TCSI.2017.2756020

5. Li, H.-Y., et al., "CPW-fed frequency-reconfigurable slot-loop antenna with a tunable matching network based on ferroelectric varactors," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 614-617, 2015.
doi:10.1109/LAWP.2014.2375334

6. Li, Y., et al., "A compact DVB-H antenna with varactor-tuned matching circuit," Microwave and Optical Technology Letters, Vol. 52, No. 8, 1786-1789, 2010.
doi:10.1002/mop.25317

7. Haitao, Z., G. Huai, and L. Guann-Pyng, "Broad-band power amplifier with a novel tunable output matching network," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3606-3614, 2005.
doi:10.1109/TMTT.2005.858374

8. Firrao, E. L., et al., "Hardware implementation overhead of switchable matching networks," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 64, No. 5, 1152-1163, 2017.
doi:10.1109/TCSI.2016.2644983

9. Barani, N., J. F. Harvey, and K. Sarabandi, "Fragmented antenna realization using coupled small radiating elements," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1725-1735, 2018.
doi:10.1109/TAP.2018.2806397

10. Song, M., et al., "An energy-efficient antenna impedance detection using electrical balance for single-step on-chip tunable matching in wearable/implantable applications," IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 6, 1236-1244, December 2017.
doi:10.1109/TBCAS.2017.2771500

11. Chen, Y. and D. Manteuffel, "A tunable decoupling and matching concept for compact mobile terminal antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1570-1578, April 2017.
doi:10.1109/TAP.2017.2670318

12. Kabiri, Y., P. Gardner, and C. Constantinou, "Injection matched approach for wideband tunable electrically small antennas," IET Microwaves, Antennas & Propagation, Vol. 8, No. 11, 878-886, August 19, 2014.
doi:10.1049/iet-map.2013.0700

13. Im, D. and K. Lee, "Highly linear silicon-on-insulator CMOS digitally programmable capacitor array for tunable antenna matching circuits," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 12, 665-667, December 2013.
doi:10.1109/LMWC.2013.2284776

14. Tang, X., K. Mouthaan, and J. C. Coetzee, "Tunable decoupling and matching network for diversity enhancement of closely spaced antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 268-271, 2012.
doi:10.1109/LAWP.2012.2188773

15. Maktoomi, M. A., M. S. Hashmi, and V. Panwar, "A dual-frequency matching network for FDCLs using dual-band λ/4-lines," Progress In Electromagnetics Research Letters, Vol. 52, 23-30, 2015.
doi:10.2528/PIERL15020405

16. Wang, Z., J. Liu, H. Li, and Y.-Z. Yin, "A UHF RFID antenna using double-tuned impedance matching for bandwidth enhancement," Progress In Electromagnetics Research Letters, Vol. 70, 59-66, 2017.
doi:10.2528/PIERL17070102

17. Du, Z., K. Gong, and J. S. Fu, "A novel compact wide-band planar antenna for mobile handsets," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 613-619, February 2006.
doi:10.1109/TAP.2005.863088

18. Bahl, I. J., Fundamental of RF and Microwave Transistor Amplifier, John Wiley and Sons, Inc., 2009.
doi:10.1002/9780470462348.ch22