Vol. 83
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-20
Broadband Waveguide-Fed 8-by-1 Gap-Coupled Microstrip Antenna Array for 60-GHz Short-Range Point-to-Point Wireless Communications
By
Progress In Electromagnetics Research Letters, Vol. 83, 7-14, 2019
Abstract
In this paper, a 60-GHz broadband 8-by-1 gap-coupled microstrip antenna array is presented and experimentally investigated. The proposed antenna array has been implemented using a Miniature Hybrid Microwave Integrated Circuits (MHMIC) fabrication process on a thin ceramic substrate with εr = 9.9, and h = 127 μm. For a comprehensive characterization and to accurately evaluate losses, as well as manufacturing tolerances, the proposed antenna array structure has been implemented using two different feeding techniques. The first one adopts a grounded broadband via-hole less transition from coplanar to microstrip line (GCPW-to-MS), while the second one has involved a broadband waveguide (WR12) to microstrip transition, based on a ridged waveguide concept. The obtained results have demonstrated that the proposed gap-coupled array configuration provides an improved bandwidth (4.56%) and an enhanced gain (11.8 dBi), while maintaining a lower side-lobe level (13.4 dB). These outstanding performances make the proposed WR12 gap-coupled array structure a potential candidate for the future emerging 60-GHz short-range point-to-point wireless communication systems.
Citation
Chaouki Hannachi, Tarek Djerafi, and Serioja Ovidiu Tatu, "Broadband Waveguide-Fed 8-by-1 Gap-Coupled Microstrip Antenna Array for 60-GHz Short-Range Point-to-Point Wireless Communications," Progress In Electromagnetics Research Letters, Vol. 83, 7-14, 2019.
doi:10.2528/PIERL18113001
References

1. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., Wiley, 2011.

2. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.

3. Hannachi, C. and S. O. Tatu, "Performance comparison of 60 GHz printed patch antennas with different geometrical shapes using miniature hybrid microwave integrated circuits technology," IET Microwaves, Antennas & Propagation, Vol. 11, No. 1, 106-112, Jan. 2017.
doi:10.1049/iet-map.2015.0720

4. Fan, S. T., Y. Z. Yin, B. Lee, W. Hu, and X. Yang, "Bandwidth enhancement of a printed slot antenna with a pair of parasitic patches," IEEE Antennas and Wireless Propag. Lett., Vol. 11, 1230-1233, 2012.
doi:10.1109/LAWP.2012.2224311

5. Wong, H., K. K. So, and X. Gao, "Bandwidth enhancement of a monopolar patch antenna with V-shaped slot for car-to-car and WLAN communications," IEEE Trans. Veh. Technol.,, Vol. 65, No. 3, 1130-1136, Mar. 2016.
doi:10.1109/TVT.2015.2409886

6. Sallam, M. O., S. M. Kandil, V. Volski, G. A. E. Vandenbosch, and E. A. Soliman, "Wideband CPW-fed flexible bow-tie slot antenna for WLAN/WiMAX systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4274-4277, Aug. 2017.
doi:10.1109/TAP.2017.2710227

7. Aanandan, C. K., P. Mohanan, and K. G. Nair, "Broad-band gap coupled microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 10, 1581-1586, 1990.
doi:10.1109/8.59771

8. Wood, C., "Improved bandwidth of microstrip antennas using parasitic elements," IEE Proc. --- Microw. Antennas Propag., Vol. 127, No. 4, 231-234, Aug. 1980.

9. Kumar, G. and K. Gupta, "Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges," ” IEEE Transactions on Antennas and Propagation, Vol. 32, No. 12, 1375-1379, Dec. 1984.
doi:10.1109/TAP.1984.1143264

10. Deshmukh, A. A., S. Nagarbowdi, P. A. Kadam, and A. A. Odhekar, "Broadband gap-coupled isosceles triangular microstrip antennas," 2017 International Conference on Emerging Trends & Innovation in ICT (ICEI), 67-72, Pune, 2017.
doi:10.1109/ETIICT.2017.7977012

11. Nirate, S., R. M. Yadahalli, K. K. Usha, R. M. Vani, and P. V. Hunagund, "Wideband gap-coupled suspended rectangular microstrip antenna," 2008 International Conference on Recent Advances in Microwave Theory and Applications, 833-835, Jaipur, 2008.
doi:10.1109/AMTA.2008.4763126

12. Bhalekar, P., L. K. Ragha, and R. Gupta, "Wideband gap coupled microstrip antenna using RIS and RIS cavity resonator," 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 1291-1295, Bangalore, 2017.

13. Rathod, S. M., R. N. Awale, K. P. Ray, and A. D. Chaudhari, "A compact gap coupled half-hexagonal microstrip antenna with improved bandwidth," 2017 IEEE Applied Electromagnetics Conference (AEMC), 1-2, Aurangabad, 2017.

14. Ponchak, G. E. and R. N. Simons, "A new rectangular waveguide to coplanar waveguide transition," IEEE MTT-S Int. Dig., 491-492, 1990.

15. Hannachi, C., T. Djerafi, and S. O. Tatu, "Broadband E-band WR12 to microstrip line transition using a ridge structure on high-permittivity thin-film material," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 7, 552-554, July 2018.
doi:10.1109/LMWC.2018.2835475

16. Nasr, M. A. and A. A. Kishk, "Wideband inline coaxial to ridge waveguide transition with tuning capability for ridge gap waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 6, 2757-2766, 2018.
doi:10.1109/TMTT.2018.2815690

17. Corporation, A., Ansoft High Frequency Structure Simulation (HFSS), Version 13, 2010.

18. Hannachi, C., D. Hammou, T. Djerafi, Z. Ouardirhi, and S. O. Tatu, "Complete characterization of novel MHMICs for V-band communication systems," Journal of Electrical and Computer Engineering, 1-7, Article ID 686708, 2013.

19. Hannachi, C. and S. O. Tatu, "A compact V-band planar gap-coupled antenna array: Improved design and analysis," IEEE Access, Vol. 5, 8763-8770, 2017.
doi:10.1109/ACCESS.2017.2705484