1. Kuklin, D., "Choosing configurations of transmission line tower grounding by back flashover probability value," Front. Energy, Vol. 10, No. 2, 213-226, 2016.
doi:10.1007/s11708-016-0398-6
2. Visacro, S. and R. Alipio, "Frequency dependence of soil parameters: Experimental results, predicting formula and influence on the lightning response of grounding electrodes," IEEE Trans. Power Delivery, Vol. 27, No. 2, 927-935, 2012.
doi:10.1109/TPWRD.2011.2179070
3. Alipio, R. and S. Visacro, "Frequency dependence of soil parameters: Effect on the lightning response of grounding electrodes," IEEE Trans. Electromagn. Compat., Vol. 55, No. 1, 132-139, 2013.
doi:10.1109/TEMC.2012.2210227
4. Visacro, S. and F. H. Silveira, "The impact of the frequency dependence of soil parameters on the lightning performance of transmission lines," IEEE Trans. Electromagn. Compat., Vol. 57, No. 3, 434-441, 2015.
doi:10.1109/TEMC.2014.2384029
5. Alipio, R. and S. Visacro, "Modeling the frequency dependence of electrical parameters of soil," IEEE Trans. Electromagn. Compat., Vol. 56, No. 5, 1163-1171, 2014.
doi:10.1109/TEMC.2014.2313977
6. Sumner, J. S., Principles of Induced Polarization for Geophysical Exploration, Elsevier Scientific, 1976.
7. Roy, A. and A. Apparao, "Depth of investigation in direct current methods," Geophysics, Vol. 36, No. 5, 943-959, 1971.
doi:10.1190/1.1440226
8. Barker, R., "Depth of investigation of collinear symmetrical four-electrode arrays," Geophysics, Vol. 54, No. 8, 1031-1037, 1989.
doi:10.1190/1.1442728
9. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, 2005.
10. Railton, C. J., D. L. Paul, I. J. Craddock, and G. S. Hilton, "The treatment of geometrically small structures in FDTD by the modification of assigned material parameters," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4129-4136, 2005.
doi:10.1109/TAP.2005.860008
11. Taniguchi, Y., Y. Baba, N. Nagaoka, and A. Ametani, "An improved thin wire representation for FDTD computations," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3248-3252, 2008.
doi:10.1109/TAP.2008.929447
12. Taniguchi, Y., Y. Baba, N. Nagaoka, and A. Ametani, "An improved arbitrary-radius-wire representation for FDTD electromagnetic and surge calculations," International Conference on Power Systems Transients (IPST2009), Kyoto, Japan, 2009.
13. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microw. Guided Wave Lett., Vol. 7, No. 5, 121-123, 1997.
doi:10.1109/75.569723
14. Kuklin, D., "Extension of thin wire techniques in the FDTD method for Debye media," Progress In Electromagnetics Research M, Vol. 51, 9-17, 2016.
doi:10.2528/PIERM16081804
15. Kelley, D. F., T. J. Destan, and R. J. Luebbers, "Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach," IEEE Trans. Antennas Propag., Vol. 55, No. 7, 1999-2005, 2007.
doi:10.1109/TAP.2007.900230
16. Roy, A., "Depth of Investigation in Wenner, three-electrode and dipole-dipole DC resistivity methods," Geophysical Prospecting, Vol. 20, No. 2, 329-340, 1972.
doi:10.1111/j.1365-2478.1972.tb00637.x
17. Heiland, C. A., Geophysical Exploration, Prentice-Hall, Inc., 1946.
18. Heidler, F. and J. Cvetic, "A class of analytical functions to study the lightning effects associated with the current front," European Transactions on Electrical Power, Vol. 12, No. 2, 141-150, 2002.
doi:10.1002/etep.4450120209