Vol. 84
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-04-30
A Wideband Gate Mixer Using 0.15 μm GaAs Enhancement-Mode PHEMT Technology
By
Progress In Electromagnetics Research Letters, Vol. 84, 7-14, 2019
Abstract
This paper presents a wideband gate mixer using 0.15 μm GaAs enhancement-mode pseudomorphic high electron mobility transistor (E-mode PHEMT) process. The proposed mixer is based on a single-ended gate mixer topology. Proper input matching networks are used to ensure good conversion gain as well as a wide frequency band. A λ/4 open stub at local oscillator (LO) frequency and a low-pass filter at the drain terminal do great help to enhance LO-IF and RF-IF isolation performance. A Lange coupler is used to maintain LO-RF isolation in a wide frequency band. The measured results show that the mixer operates in wide RF frequency of 17-26 GHz and IF frequency of 0.8-1.7 GHz with a conversion gain of 5-8 dB. The 1 dB compression point (P1 dB) is -1~1 dBm, and the needed LO power is only 1 dBm. The LO-IF, RF-IF, and LO-RF isolations are about 45, 45, and 20 dB, respectively. This represents excellent performance for GaAs PHEMT mixer in terms of frequency bandwidth, conversion gain, isolation, and P1 dB performance.
Citation
Xi Wang, Jun Hu, Yongbo Su, Peng Ding, Wuchang Ding, Feng Yang, Asif Muhammad, and Zhi Jin, "A Wideband Gate Mixer Using 0.15 μm GaAs Enhancement-Mode PHEMT Technology," Progress In Electromagnetics Research Letters, Vol. 84, 7-14, 2019.
doi:10.2528/PIERL18111608
References

1. Recko, C., T. Rogala, and W. Susek, "band integrated microwave receiver," Baltic URSI Symposium, 136-138, 2015.

2. Kang, J., A. Kurdoghlian, A. Margomenos, H. P. Moyer, D. Brown, and C. McGuire, "Design of 18-26 GHz receiver with wideband RF, LO and IF in 0.15 μm GaAs pHEMT process," IEEE Asia Pacific Microwave Conference (APMC), 1250-1253, 2017.

3. Nguyen, T., A. Pham, K. Fujii, and A. Riddle, "Development of a double-octave (7-34 GHz), highly linear single balanced resistive HEMT mixer using device linearization techniques," 2016 IEEE MTT-S International, 1-4, 2016.

4. Kim, S. C., D. An, B. O. Lim, T. J. Baek, D. H. Shin, and J. K. Rhee, "High-performance 94-GHz single balanced mixer using 70-nm MHEMTs and surface micromachined technology," IEEE Electron Device. Lett., Vol. 27, No. 1, 28-30, 2006.
doi:10.1109/LED.2005.861403

5. Tseng, S. C., C. C. Meng, and C. K. Wu, "GaInP/GaAs HBT wideband transformer Gilbert downconverter with low voltage supply," IEEE Electron. Lett., Vol. 44, No. 2, 127-128, 2008.
doi:10.1049/el:20082876

6. Liu, W., H. Liu, R.Wang, Y. Li, X. Cheng, and Y. Z. Xiong, "AW-band direct-conversion I-Q mixer in 0.13 μm SiGe BiCMOS technology," 2016 IEEE MTT-S International Wireless Symposium, 1-4, 2016.

7. Hwang, Y. J., H. Wang, and T. H. Chu, "A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 7, 313-315, 2004.
doi:10.1109/LMWC.2004.829256

8. Ning, X., H. Yao, X.Wang, and Z. Jin, "AW-band single-ended downconversion/upconversion gate mixer in InP HEMT technology," 2013 IEEE International Conference on Microwave Technology & Computational Electromagnetics, 277-279, 2013.
doi:10.1109/ICMTCE.2013.6812434

9. Chang, H. Y., Y. S. Wu, and Y. C. Wang, "A 38% tuning bandwidth low phase noise differential voltage controlled oscillator using a 0.5 μm E/D-pHEMT process," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 7, 467-469, 2009.
doi:10.1109/LMWC.2009.2022136

10. Chu, L. H., E. Y. Chang, S. H. Chen, Y. C. Lien, and C. Y. Chang, "2 V-operated InGaP-AlGaAs-InGaAs enhancement-mode pseudomorphic HEMT," IEEE Electron Device. Lett., Vol. 26, No. 2, 53-55, 2005.
doi:10.1109/LED.2004.841184

11. Yan, P. P., H.Wei, and J. X. Chen, "Design and implementation of a millimeter wave active mixer MMIC," J. Infrared Millim. Waves, Vol. 27, No. 5, 333-336, 2008.

12. PE15-00 0.15 μm InGaAs pHEMT E-mode Power Device Model Handbook Ver. 1.0.3. Oct. 04, 2016.

13. Hou, J., H. Xie, X. Li, H. Zhang, M. Zhao, and Y. Fan, "Design of a broadband fixed IF sub-harmonic mixer at Ka band," Progress In Electromagnetics Research Letters, Vol. 79, 9-15, 2018.
doi:10.2528/PIERL18060802

14. Yu, C. J., Z. Li, and M. H. Zhao, "A K-band low conversion loss single balanced mixer with GaAs Schottky barrier diode," IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, 1-3, 2016.

15. Kjelgard, K. G. and T. S. Lande, "A K-band UWB receiver front-end with passive mixer in 90 nm CMOS," IEEE International Conference on Ultra-Wideband (ICUWB), 180-183, 2013.
doi:10.1109/ICUWB.2013.6663844

16. Lin, H. H., Y. H. Lin, and H. Wang, "A high linearity 24-GHz down-conversion mixer using distributed derivative superposition technique in 0.18-μm CMOS process," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 1, 49-51, 2017.
doi:10.1109/LMWC.2017.2774142