Vol. 78
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-02-10
Compressed Sensing for Fast Electromagnetic Scattering Analysis of Complex Linear Structures
By
Progress In Electromagnetics Research M, Vol. 78, 155-163, 2019
Abstract
When method of moments (MOM) is applied to calculate electromagnetic scattering problems of the linear structures, traditional basis functions such as RWG functions are unable to satisfy the requirements of numerical discretization, so linear basis functions are constructed to discrete line structures, To avoid direct calculation of dense impedance matrix equation, compressed sensing (CS) in conjugation with appropriate transformation is introduced. Firstly, the impedance matrix equation is operated to obtain an alternative equation in transform domain. Secondly, CS is used to form an undetermined equation to be solved, under the theoretical framework of CS, and the underdetermined equation can be solved by reconstruct algorithm ​but not iterative approach. Finally, numerical simulations of single wound axial mode helical antenna and four element linear antennas array are discussed to demonstrate the efficiency and accuracy of the proposed method.
Citation
Xuehua Ma, Ming Sheng Chen, Jinhua Hu, Meng Kong, Zhixiang Huang, and Xian-Liang Wu, "Compressed Sensing for Fast Electromagnetic Scattering Analysis of Complex Linear Structures," Progress In Electromagnetics Research M, Vol. 78, 155-163, 2019.
doi:10.2528/PIERM18111304
References

1. Xu, X. W., B. Huo, and M. He, "Exact modeling for the influence of the von karman radome on antennas," Transactions of Beijing Institute of Technology, 532-535, Beijing, China, 2006.

2. Zhao, W. J. and L. W. Li, "Efficient analysis of antenna radiation in the presence of airborne dielectric radomes of arbitrary shape," IEEE Transaction on Antennas and Propagation, Vol. 53, 32-35, 2005.

3. Ma, Y., "Characteristic analysis of several wire antennas attached to an arbitrary faceted conducting body,", University of Electronic Science and Technology, Chengdu, China, 2002.

4. Harrington, R. F., Field Computation by Moment Methods, 5-90, IEEE Press, 1993.
doi:10.1109/9780470544631

5. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transaction on Antennas and Propagation, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

6. Ji, Z., T. K. Sarkar, B. H. Jung, Y. S. Chung, M. S. Palma, and M. Yuan, "A stable solution of time domain electric field integral equation for thin-wire antennas using the laguerre polynomials," IEEE Transactions on Antennas and Propagation, Vol. 52, 2641-2649, 2004.
doi:10.1109/TAP.2004.834437

7. Wagner, R. L. and W. C. Chew, "Study of wavelets for the solution of electromagnetic integral equations," IEEE Transactions on Antennas and Propagation, 802-810, 1995.
doi:10.1109/8.402199

8. Baharav, Z. and Y. Leviatan, "Impedance matrix compression (IMC) using iteratively selected wavelet basis for MFIE formulations," Microwave and Optical Technology Letters, 145-150, 1996.
doi:10.1002/(SICI)1098-2760(19960620)12:3<145::AID-MOP7>3.0.CO;2-H

9. Baharav, Z. and Y. Leviatan, "Impedance matrix compression (IMC) using iteratively selected wavelet basis," IEEE Transactions on Antennas and Propagation, 226-233, 1998.
doi:10.1109/8.660967

10. Wang, Z., "The application of compressive sensing theory in computational electromagnetics,", University of Electronic Science and Technology of China, Chengdu, China, 2015.

11. Donoho, D. L., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582

12. Candès, E., "Compressive sampling," European Mathematical Society. Proceedings of the International Congress of Mathematicians, 1433-1450, American Mathematical Society, Madrid, 2006.

13. Chen, M. S., "Compressed sensing and its application in analysis of electromagnetic scattering problems,", Post-doctoral report of the University of Science and Technology of China, 2011.

14. Cao, X. Y., M. S. Chen, and X. L.Wu, "Sparse transform matrices and its application in calculation of electromagnetic scattering problems," Chinese Physics Letters, Vol. 2, 1-4, 2013.

15. Gui, G., A. Mehbodniya, Q. Wan, and F. Adachi, "Sparse signal recovery with OMP algorithm using sensing measurement matrix," IEICE Electronics Express, Vol. 8, No. 5, 285-290, 2011.
doi:10.1587/elex.8.285

16. Kong, M., M. S. Chen, B. Wu, and X. L. Wu, "Fast and stabilized algorithm for analyzing electromagnetic scattering problems of bodies of revolution by compressive sensing," IEEE Antennas Wireless Propag. Lett., Vol. 16, 198-201, 2017.
doi:10.1109/LAWP.2016.2569605