Vol. 83
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-04-10
New Ultra-Wideband Filter with Sharp Notched Band Using Defected Ground Structure
By
Progress In Electromagnetics Research Letters, Vol. 83, 99-105, 2019
Abstract
An ultra-wideband microstrip bandpass filter which operates from 3.1 GHz to 10.6 GHz, with high selectivity and sharp notched band is presented and experimentally verified. The filter is composed of a square loop shaped defected ground structure, metal faces, and microstrip lines. By adding two short stubs connected by a short circuit point on the microstrip lines, the filter achieves an attractive capacity in out-of-band rejection. By placing open stubs in microstrips, the filter realizes a notched band in passband. To illustrate the possibilities of the new approach, an ultra-wideband microstrip bandpass filter is designed and fabricated. Measured results agree well with the predicted counterparts.
Citation
Jingbo Liu, Wenhao Ding, Jianzhong Chen, and Anxue Zhang, "New Ultra-Wideband Filter with Sharp Notched Band Using Defected Ground Structure," Progress In Electromagnetics Research Letters, Vol. 83, 99-105, 2019.
doi:10.2528/PIERL18111302
References

1. Gao, X., W. Feng, and W. Che, "Compact ultra-wideband bandpass filter with improved upper stopband using open/shorted stubs," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 2, 123-125, 2017.
doi:10.1109/LMWC.2016.2647385

2. Yang, L., Q. Xu, G. Wu, and J. Ye, "Compact ultra-wideband BPF with broad stopband using improved short-circuited coplanar waveguide multiple-mode resonator," 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2087-2090, 2017.
doi:10.1109/IAEAC.2017.8054385

3. Lu, J. and J. Wang, "Design of compact balanced ultra-wideband bandpass filter with half mode dumbbell DGS," Electronics Letters, Vol. 52, No. 9, 731-732, 2016.
doi:10.1049/el.2016.0322

4. Gomez-Garcia, R., Raul-Loeches-Sanchez, D. Psychogiou, J.-M. Munoz-Ferreras, and D. Peroulis, "Dual-passband filters and extended-stopband wide-band bandpass filters based on generalized stub-loaded planar circuits," 2017 IEEE MTT-S International Microwave Symposium (IMS), 368-371, 2017.
doi:10.1109/MWSYM.2017.8059122

5. Guo, Z. and T. Yang, "Novel compact ultra-wideband bandpass filter based on vialess vertical CPW/microstrip transitions," Electronics Letters, Vol. 53, No. 18, 1258-1260, 2017.
doi:10.1049/el.2017.2060

6. Kheir, M., T. Kröger, and M. Höft, "A new class of highly-miniaturized reconfigurable UWB filters for multi-band multi-standard transceiver architectures," IEEE Access, Vol. 5, 1714-1723, 2017.
doi:10.1109/ACCESS.2017.2670526

7. Zhou, C.-X., P.-P. Guo, K. Zhou, and W.Wu, "Design of a compact UWB filter with high selectivity and superwide stopband," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 7, 636-638, 2017.
doi:10.1109/LMWC.2017.2711509

8. Zhang, T., F. Xiao, and J. Bao, "Compact ultra-wideband bandpass filter with good selectivity," Electronics Letters, Vol. 52, No. 3, 210-212, 2016.
doi:10.1049/el.2015.2937

9. Jankovic, N., G. Niarchos, and V. Crnojevi-Bengin, "Compact UWB bandpass filter based on grounded square patch resonator," Electronics Letters, Vol. 52, No. 5, 372-374, 2016.
doi:10.1049/el.2015.4087

10. Lan, S.-W., M.-H. Weng, C.-Y. Hung, and S.-J. Chang, "Design of a compact ultra-wideband bandpass filter with an extremely broad stopband region," IEEE Microwave and Wire Components Letters, Vol. 26, No. 6, 392-394, 2016.
doi:10.1109/LMWC.2016.2558039