Vol. 82
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-11
Design of an Implantable Antenna Operating at ISM Band Using Magneto-Dielectric Material
By
Progress In Electromagnetics Research Letters, Vol. 82, 65-72, 2019
Abstract
A novel technique to design a wideband implantable antenna has been proposed by using magneto-dielectric material. The antenna is a half cutting of a coplanar waveguide fed antenna with symmetric geometry printed on a flexible substrate with 24 um thickness. A piece of magneto-dielectric sheet with 0.25 mm thickness is attached on the bottom layer of the antenna to tune the antenna bandwidth. The antenna is simulated in a one-layer body phantom. Simulation shows that the antenna has a wide bandwidth covering 902-928 MHz Industrial, Scientific, and Medical (ISM) band when the body phantom is filled with muscle. There are frequency bandwidth shifts when the body phantom is filled with different tissues of skin, small intestine, and stomach, respectively. The antenna has wide bandwidth covering ISM band in these tissues. Measurement has been done in meat mince. The measured bandwidth of proposed antenna is 810-1062 MHz. The proposed antenna has a compact size of 4 mm×12 mm×0.274 mm suitable to be applied in capsule endoscope, wireless pacemaker, etc.
Citation
Zhihao Luan, Lulu Liu, Wei-Hua Zong, Zhejun Jin, and Shandong Li, "Design of an Implantable Antenna Operating at ISM Band Using Magneto-Dielectric Material," Progress In Electromagnetics Research Letters, Vol. 82, 65-72, 2019.
doi:10.2528/PIERL18111202
References

1. Xu, L. J., Y. X. Guo, and W. Wu, "Miniaturized circularly polarized loop antenna for biomedical applications," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 922-930, Mar. 2015.
doi:10.1109/TAP.2014.2387420

2. Gani, I. and H. Yoo, "Multi-band antenna system for skin implant," IEEE Microw. Wireless Comp. Lett., Vol. 26, No. 4, 294-296, Apr. 2014.
doi:10.1109/LMWC.2016.2538470

3. Chirwa, L. C., P. A. Hammond, S. Roy, and D. R. S. Cumming, "Electromagnetic radiation from ingested sources in the human intestine between 150 MHz and 1.2 GHz," IEEE Trans. Biomed. Eng., Vol. 50, No. 4, 484-492, Apr. 2003.
doi:10.1109/TBME.2003.809474

4. Liu, X. Y., Z. T. Wu, Y. Fan, and E. M. Tentzeri, "A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring," IEEE Antennas Wireless Propag. Lett., Vol. 16, 577-580, 2017.
doi:10.1109/LAWP.2016.2590477

5. Li, H., Y. X. Guo, and S. Q. Xiao, "Broadband circularly polarised implantable antenna for biomedical applications," Electro. Lett., Vol. 52, No. 7, 504-506, Jul. 2016.
doi:10.1049/el.2015.4445

6. Liu, C., Y. X. Guo, R. Jegadeesan, and S. Xiao, "In vivo testing of circularly polarized implantable antennas in rats," IEEE Antennas Wireless Propag. Lett., Vol. 14, 783-786, 2015.
doi:10.1109/LAWP.2014.2382559

7. Liu, C., Y. X. Guo, and S. Qiu, "Circularly polarized helical antenna for ISM-band ingestible capsule endoscope systems," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6027-6039, Dec. 2014.
doi:10.1109/TAP.2014.2364074

8. Jung, Y. H., Y. Qiu, and S. Lee, "A compact Parylene-coated WLAN flexible antenna for implantable electronics," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1382-1385, 2016.
doi:10.1109/LAWP.2015.2510372

9. Li, H., Y. X. Guo, C. Liu, S. Xiao, and L. Lin, "A miniature-implantable antenna for medradio-band biomedical telemetry," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1176-1179, 2015.
doi:10.1109/LAWP.2015.2396535

10. Xiao, S., C. Liu, Y. Li, X. M. Yang, and X. Liu, "Small-size dual-antenna implantable system for biotelemetry devices," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1723-1726, 2016.
doi:10.1109/LAWP.2016.2528987

11. Xu, L. J., Y. X. Guo, and W. Wu, "Bandwidth enhancement of an implantable antenna," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1510-1513, 2015.
doi:10.1109/LAWP.2014.2374217

12. Alrawashde, R. S., Y. Huang, M. Kod, and A. A. B. Sajak, "A broadband flexible implantable loop antenna with complementary split ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1506-1509, 2015.
doi:10.1109/LAWP.2015.2403952

13. Chien, T. F., C.M. Cheng, H. C. Yang, J. W. Jiang, and C. H. Luo, "Development of nonsuperstrate implantable low-profile CPW-fed ceramic antennas," IEEE Antennas Wireless Propag. Lett., Vol. 9, 599-602, 2010.
doi:10.1109/LAWP.2010.2053342

14. Wang, J., J. Liu, K. Suguri, and D. Anzai, "An in-body impulse radio transceiver with implant antenna miniaturization at 30 MHz," IEEE Microw. Wireless Comp. Lett., Vol. 25, No. 7, 484-486, 2015.
doi:10.1109/LMWC.2015.2429112

15. Liu, W. J. and Q. X. Chu, "Half-cut disc UWB antenna with tapered CPW structure for USB application ," Microw. Opt. Technol. Lett., Vol. 52, No. 6, 1380-138, Jun. 2014.
doi:10.1002/mop.25193

16. Sun, M. and Y. P. Zhang, "Miniaturization of planar monopole antennas for ultrawide-band applications," Proc. Int. Workshop Antenna Technol. Small Smart Antenna Metamater. Appl., 197-200, Cambridge, U.K., Mar. 2007.
doi:10.1109/IWAT.2007.370110

17. Mobashsher, A. T. and A. Abbosh, "Utilizing symmetry of planar ultra-wideband antennas for size reduction and enhanced performance," IEEE Antennas Propag. Mag., Vol. 57, No. 2, 153-166, Apr. 2015.
doi:10.1109/MAP.2015.2414488

18. Ji, J. K., W. K. Ahn, J. S. Kum, S. H. Park, G. H. Kim, and W. M. Seong, "Miniaturized T-DMB antenna with a low-loss Ni-Mn-Co ferrite for mobile handset applications," IEEE Magnet. Lett., Vol. 1, 5000104-5000104, 2009.

19. Bae, S., Y. K. Hong, J. J. Lee, W. M. Seong, J. S. Kum, W. K. Ahn, and J. H. Park, "Miniaturized broadband ferrite T-DMB antenna for mobile-phone applications," IEEE Trans. Magnetics, Vol. 46, No. 6, 2361-2364, Jun. 2010.
doi:10.1109/TMAG.2010.2044376

20. Xia, Q., H. Su, T. Zhang, J. Li, G. Shen, H. Zhang, and X. Tang, "Miniaturized terrestrial digital media broadcasting antenna based on low loss magneto-dielectric materials for mobile handset applications," Journal of Applied Physics, 1-4, 2012.

21. Cheon, Y., J. Lee, and J. Lee, "Quad-band monopole antenna including LTE 700 MHz with magneto-dielectric material," IEEE Antennas Wireless Propag. Lett., Vol. 11, 137-140, 2012.
doi:10.1109/LAWP.2012.2184517

22. Lee, J., Y. K. Hong, S. Bae, G. S. Abo, W. M. Seong, and G. H. Kim, "Miniature long-term evolution (LTE) MIMO ferrite antenna," IEEE Antennas Wireless Propag. Lett., Vol. 10, 603-606, 2011.

23. Park, B. Y., M. H. Jeong, and S. O. Park, "A magneto-dielectric handset antenna for LTE/WWAN/GPS applications," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1482-1485, 2014.
doi:10.1109/LAWP.2014.2342256

24., https://www.fcc.gov/general/body-tissue-dielectric-parameters.

25. IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, , IEEE Standard C95.1, 1999.

26. Liu, C., Y. Zhang, and X. Liu, "Circularly polarized implantable antenna for 915 MHz ISM-band far-field wireless power transmission," IEEE Antennas Wireless Propag. Lett., Vol. 17, 373-376, 2018.
doi:10.1109/LAWP.2018.2790418

27. Islam, S., K. P. Esselle, D. Bull, and P. M. Pilowsky, "Implantable compact antennas for wireless bio-telemetry: A comparative study," The 2014 International Workshop on Antennas Technology, 167-170, 2014.

28. Hassan, S., S. T. Waleed, K. Sana, and J. Latif, "A wideband circularly polarized implantable antenna for 915MHz ISM-band biotelemetry devices," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 8, 1473-1477, Aug. 2018.
doi:10.1109/LAWP.2018.2849847

29. Sudhakar, K., M. Nagarjuna, and R. Pandeeswari, "Design of bio implantable antenna for in body applications," IEEE Power, Control, Communication & Computational Technologies for Sustainable Growth, 2016.

30. Hassan, S., S. T. Waleed, K. Sana, and J. Latif, "A wideband circularly polarized implantable antenna for 915MHz ISM-band biotelemetry devices," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 8, 1473-1477, Aug. 2018.
doi:10.1109/LAWP.2018.2849847