Vol. 81
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-01-07
A Compact Dual-Band Metamaterial Inspired Antenna with Virtual Ground Plane for WiMAX and Satellite Applications
By
Progress In Electromagnetics Research Letters, Vol. 81, 29-37, 2019
Abstract
A compact dual-band metamaterial-inspired antenna is designed and developed in this paper. This design is carried out by loading a radial stub (acts as virtual ground plane) onto a circular microstrip fed patch antenna. Proposed antenna resonates at two frequencies fc1 = 2.70 GHz and fc2 = 7.34 GHz with -10 dB simulated impedance bandwidth of 6.6% (2.62-2.80 GHz) and 14.57% (6.57-7.65 GHz) respectively. First band is due to the metamaterial transmission line while second band is due to the coupling between microstrip feed and ground plane. Electrical size of the proposed antenna is 0.27λ0 × 0.27λ0 × 0.014λ00, where λ0 is the free space wavelength at f0 = 2.70 GHz. In addition, this antenna provides antenna gain of 1.49 dB at 2.70 GHz and 3.75 dB at 7.34 GHz in the boresight direction. This antenna also provides dipolar type pattern in the xz plane whereas omnidirectional pattern in the yz plane with cross polarization level of -32 dB in the lower band while cross polarization level of -23 dB is maintained even in higher band. Proposed antenna's compactness, excellent radiation characteristics and ease of fabrication make it feasible to be utilized for Worldwide interoperability for microwave access (WiMAX) and satellite TV applications.
Citation
Ashish Gupta, Abhipsha Patro, Akanksha Negi, and Arpit Kapoor, "A Compact Dual-Band Metamaterial Inspired Antenna with Virtual Ground Plane for WiMAX and Satellite Applications," Progress In Electromagnetics Research Letters, Vol. 81, 29-37, 2019.
doi:10.2528/PIERL18110603
References

1. Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti, "Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems," IET Microwaves, Antennas & Propagation, Vol. 12, No. 7, 1080-1086, 2018.
doi:10.1049/iet-map.2016.1141

2. Al-Bawri, S. S., M. F. Jamlos, P. J. Soh, S. A. A. S. Junid, M. A. Jamlos, and A. Narbudowicz, "Multiband slot-loaded dipole antenna for WLAN and LTE-A applications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 1, 63-68, 2018.
doi:10.1049/iet-map.2017.0008

3. Zhang, T., R. L. Li, G. Jin, G. Wei, and M. M. Tentzeris, "A novel multiband planar antenna for GSM/UMTS/LTE/ZIGBEE/RFID mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 11, 4209-4214, 2011.
doi:10.1109/TAP.2011.2164201

4. Anguera, J., C. Picher, A. Andujar, C. Puente, and S. Kahng, "Compact multiband antenna system for smartphone platforms," 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 2013.

5. Mehdipour, A., T. A. Denidni, and A.-R. Sebak, "Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 555-562, 2014.
doi:10.1109/TAP.2013.2290791

6. Sharma, S. K. and R. K. Chaudhary, "A compact zeroth-order resonating wideband antenna with dual-band characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1670-1672, 2015.
doi:10.1109/LAWP.2015.2417889

7. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "Beam tilting antenna using integrated metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2874-2879, 2014.
doi:10.1109/TAP.2014.2308516

8. Li, D., Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 6018-6023, 2012.
doi:10.1109/TAP.2012.2213231

9. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Inc., 2006.

10. Sanada, A., C. Caloz, and T. Itoh, "Novel zeroth-order resonance in composite right/left-handed transmission line resonators," Asia-Pacific Microwave Conference, Vol. 3, 1588-1592, Seoul, Korea, 2003.

11. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 868-876, 2007.
doi:10.1109/TAP.2007.891845

12. Jang, T., J. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zerothorder resonant antennas with extended bandwidth and high efficiency on vialess single layer," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 363-372, 2011.
doi:10.1109/TAP.2010.2096191

13. Niu, B.-J., Q.-Y. Feng, and P.-L. Shu, "Epsilon negative zeroth- and first order resonant antennas with extended bandwidth and high efficiency," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 5878-5884, 2013.
doi:10.1109/TAP.2013.2281357

14. Amani, N., M. Kamyab, A. Jafargholi, A. Hosseinbeig, and J. S. Meiguni, "Compact tri-band metamaterial-inspired antenna based on CRLH resonant structures," Electronics Letters, Vol. 50, No. 12, 847-848, 2014.
doi:10.1049/el.2014.0875

15. Huang, H., Y. Liu, S. Zhang, and S. Gong, "Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 662-665, 2015.
doi:10.1109/LAWP.2014.2376969

16. Gupta, A. and R. K. Chaudhary, "A compact short-ended zor antenna with gain enhancement using EBG loading," Microwave and Optical Technology Letters (MOTL), Vol. 58, 1194-1197, 2016.
doi:10.1002/mop.29761

17. Li, D., Z. Szabo, X. Qing, E. P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 6018-6023, 2012.
doi:10.1109/TAP.2012.2213231

18. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1143-1147, 2012.
doi:10.1109/TAP.2011.2173114