Vol. 78
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-23
An Enhanced Forward-Looking SAR Imaging Algorithm Based on Compressive Sensing
By
Progress In Electromagnetics Research M, Vol. 78, 69-81, 2019
Abstract
Having the imaging ability of the area in front of flight direction, forward-looking synthetic aperture radar (SAR) has become a hot topic in areas of SAR research. Nevertheless, constrained by limited azimuth aperture length,the imaging of forward-looking SAR suffers from poor azimuth resolution. Aiming at this problem, an enhanced forward-looking SAR imaging algorithm is proposed in this paper. This algorithm takes both super-resolving ability and computational burden into account. Firstly, an imaging framework is proposed to decrease the computational burden. Secondly, an iterative regularization implementation of compressive sensing (CS) is proposed to improve azimuth resolution. Finally, imaging experiments based on simulated data and Ku-band complex valued image data from the MiniSAR system demonstrate the effectiveness of the proposed algorithm.
Citation
Bo Pang, Hao Wu, Shiqi Xing, Dahai Dai, Yongzhen Li, and Xuesong Wang, "An Enhanced Forward-Looking SAR Imaging Algorithm Based on Compressive Sensing," Progress In Electromagnetics Research M, Vol. 78, 69-81, 2019.
doi:10.2528/PIERM18110504
References

1. Witte, F., "Forward looking radar,", US Patent 5182562, 1993.

2. Sutor, T., F. Witte, and A. Moreira, "A new sector imaging radar for enhanced vision-SIREV," Proceedings of SPIE, 39-47, July 1999.

3. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing, John Wiley & Sons, 1991.

4. Wang, J. and Z. L. Zong, "Forward-looking SAR imaging algorithm via compressive sensing," Radar Science and Technology, Vol. 10, No. 1, 27-31, 2012.

5. Xu, G., Q. Q. Chen, Y. X. Hou, Y. C. Li, and M. D. Xing, "Super-resolution imaging of forward-looking scan SAR," Journal of Xidian University, Vol. 39, No. 5, 101-108, 2012.

6. Soldovieri, F., G. Gennarelli, I. Catapano, D. Liao, and D. Dogaru, "Forward-looking radar imaging: A comparison of two data processing strategies," IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, Vol. 10, No. 2, 562-571, 2017.

7. Chen, Q. and R. L. Yang, "Research of chirp scaling imaging algorithm for air-borne forward-looking SAR," Journal of Electronics & Information Technology, Vol. 30, No. 1, 228-232, 2008.

8. Ren, X. Z. and R. L. Yang, "Study on three-dimensional imaging algorithm for airborne forward-looking SAR," Journal of Electronics & Information Technology, Vol. 32, No. 6, 1361-1365, 2010.

9. Ren, X. Z., J. T. Sun, and R. L. Yang, "A new three-dimensional imaging algorithm for airborne forward-looking SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 1, 153-157, 2011.

10. Ren, X. Z., L. L. Tan, and R. L. Yang, "Research of three-dimensional imaging processing for airborne forward-looking SAR," Proceedings of IET International Radar Conference, 1-4, April 2009.

11. Pang, B., D. H. Dai, S. Q. Xing, and X. S. Wang, "Development and perspective of forward-looking imaging technique," Systems Engineering and Electronics, Vol. 35, No. 11, 40-47, 2013.

12. Moreira, A., J. Mittermayer, and R. Scheiber, "Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes," IEEE Trans. on Geoscience and Remote Sensing, Vol. 34, No. 5, 1123-1136, 1996.

13. Pang, B., S. Q. Xing, D. H. Dai, Y. Z. Li, and X. S. Wang, "Research on forward-looking synthetic aperture radar imaging algorithm of high velocity platform," Proceedings of IET International Radar Conference, 1-6, April 2013.

14. Pang, B., X. S. Wang, D. H. Dai, S. Q. Xing, and Y. Z. Li, "Imaging algorithm of high velocity forward-looking SAR based on digital beam sharpening," Chinese Journal of Radio Science, Vol. 29, No. 1, 1-8, 2014.

15. Yuan, Y., S. Chen, S. N. Zhang, and H. C. Zhao, "A chirp scaling algorithm for forward-looking linear-array SAR with constant acceleration," IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 1, 88-91, 2018.

16. Mei, H. W., Z. Q. Meng, M. Q. Liu, Y. C. Li, Y. H. Quan, S. Q. Zhu, and M. D. Xing, "Thorough understanding property of bistatic forward-looking high-speed maneuvering platform SAR," IEEE Trans. on Aerospace & Electronic Systems, Vol. 53, No. 4, 1826-1845, 2017.

17. Pu, W., J. J. Wu, Y. L. Huang, W. C. Li, Z. C. Sun, J. Y. Yang, and H. G. Yang, "Motion errors and compensation for bistatic forward-looking SAR with cubic-order processing," IEEE Trans. on Geoscience and Remote Sensing, Vol. 54, No. 12, 6940-6957, 2016.

18. Meng, Z. Q., Y. C. Li, M. D. Xing, and Z. Bao, "Property analysis of bistatic forward-looking SAR with arbitrary geometry," Systems Engineering and Electronics, Vol. 27, No. 1, 111-127, 2016.

19. Xia, J., X. F. Lu, and W. D. Chen, "Multi-channel deconvolution for forward-looking phase array radar imaging," Remote Sensing, Vol. 9, No. 7, 703-728, 2017.

20. Zhang, Y., Y. C. Zhang, Y. L. Huang, and Y. L. Yang, "A sparse Bayesian approach for forward-looking superresolution radar imaging," Sensors, Vol. 17, No. 6, 1353-1368, 2017.

21. Zhang, L., Z. J. Qiao, M. D. Xing, Y. C. Li, and Z. Bao, "High-resolution ISAR imaging with sparse stepped-frequency waveforms," IEEE Trans. on Geoscience and Remote Sensing, Vol. 49, No. 11, 4630-4651, 2011.

22. Budillon, A., A. Evangelista, and G. Schirinzi, "Three-dimensional SAR focusing from multipass signals using compressive sampling," IEEE Trans. on Geoscience and Remote Sensing, Vol. 49, No. 1, 488-499, 2011.

23. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," Proceedings of IEEE Radar Conference, 128-133, April 2007.

24. Austi, C. D., E. Ertin, and R. L. Moses, "Sparse signal methods for 3-D radar imaging," IEEE Journal of Selected Topics in Signal Processing, Vol. 5, No. 3, 408-423, 2011.

25. Varshney, K. R., M. Cetin, J. W. Fisher, and A. S. Willsky, "Sparse signal representation in structured dictionaries with application to synthetic aperture radar," IEEE Trans. on Signal Processing, Vol. 56, No. 8, 3548-3561, 2008.

26. Gurbuz, A. C., J. H. McClellan, and W. R. Scott, "Compressive sensing for GPR imaging," Proceedings of 41st Asilomar Conference on Signals, Systems Computers, 2223-2227, November 4–7, 2007.

27. Gurbuz, A. C., J. H. McClellan, and W. R. Scott, "Compressive sensing for subsurface imaging using ground penetrating radar," Signal Processing, Vol. 89, No. 10, 1959-1972, 2009.

28. Zhu, X. X. and R. Bamler, "Tomographic SAR inversion by l1-norm regularization - The compressive sensing approach," IEEE Trans. on Geoscience and Remote Sensing, Vol. 48, No. 10, 3839-3846, 2010.

29. Patel, V. M., G. R. Easley, D. M. Healy, and R. Chellappa, "Compressed synthetic aperture radar," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 244-254, 2010.

30. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, 2005.

31. Cetin, M. and W. C. Karl, "Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization," IEEE Trans. on Image Processing, Vol. 10, No. 4, 623-631, 2001.

32. Potter, L. C., E. Ertin, J. T. Parker, and M. Cetin, "Sparsity and compressed sensing in radar imaging," Proc. of IEEE, Vol. 98, No. 6, 1006-1020, 2010.

33. Samadi, S., M. Cetin, and M. A. Masnadi-Shirazi, "Sparse representation-based synthetic aperture radar imaging," IET Radar Sonar & Navigation, Vol. 5, No. 2, 182-193, 2011.

34. Xing, S., D. Dai, Y. Li, and X. Wang, "Polarimetric SAR tomography using L2,1 mixed norm sparse reconstruction method," Progress In Electromagnetics Research, Vol. 130, 105-130, 2012.

35. Magnus, J. R. and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley & Sons, 2007.

36. Sun, D., S. Q. Xing, Y. Z. Li, and D. H. Dai, "Adaptive parameter selection of SAR sparse imaging model," Journal of Remote Sensing, Vol. 21, No. 4, 579-587, 2017.

37. Austin, C. D., R. L. Moses, J. N. Ash, and E. Ertin, "On the relation between sparse reconstruction and parameter estimation with model order selection," IEEE Journal of Selected Topics in Signal Processing , Vol. 4, No. 3, 560-570, 2010.

38. Zhang, Y., G. X. Zhou, J. Jin, Q. B. Zhao, X. Y. Wang, and A. Cichocki, "Aggregation of sparse linear discriminant analyses for event-related potential classification in brain-computer interface," International Journal of Neural Systems, Vol. 24, No. 1, 1450003, 2014.

39. Pang, B., D. H. Dai, S. Q. Xing, Y. Z. Li, and X. S. Wang, "Imaging enhancement of stepped frequency radar using the sparse reconstruction technique," Progress In Electromagnetics Research, Vol. 140, 63-89, 2013.

40. Yang, J. G., J. Thompson, X. T. Huang, T. Jin, and Z. M. Zhou, "Random-frequency SAR imaging based on compressed sensing," IEEE Trans. on Geoscience and Remote Sensing, Vol. 51, No. 2, 983-994, 2013.

41. Cetin, M., W. C. Karl, and D. A. Castanon, "Feature enhancement and ATR performance using nonquadratic optimization-based SAR imaging," IEEE Trans. on Aerospace and Electronic Systems, Vol. 39, No. 4, 1375-1395, 2003.

42. Guo, B., D. Vu, L. Z. Xu, M. Xue, and J. Li, "Ground moving target indication via multichannel airborne SAR," IEEE Trans. on Geoscience and Remote Sensing, Vol. 49, No. 10, 3753-3764, 2011.

43. Stoica, P., J. Li, and H. He, "Spectral analysis of non-uniformly sampled data: A new approach versus the periodogram," IEEE Trans. on Signal Processing, Vol. 57, No. 3, 843-858, 2009.