1. Liu, Z., Z. Z. Chen, X. Q. Lin, and H. P. Zhao, "Review of research on magnetic coupling resonant wireless power transmission," Journal of Nanjing University of Information Science and Technology (Natural Science Edition), Vol. 9, No. 1, 1-7, 2017.
2. Lipu, M. S. H., M. A. Hannan, A. Hussion, M. M. Hoque, P. J. Ker, M. H. M. Saad, and A. Ayob, "A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations," Journal of Cleaner Production, Vol. 205, No. 1, 115-133, 2018.
3. Panchal, C., S. Stegen, and J. Lu, "Review of static and dynamic wireless electric vehicle charging system," Engineering Science and Technology, an International Journal, Vol. 21, No. 1, 922-937, 2018.
4. Kalwar, K. A., M. Aamir, and S. Mekhilef, "A design method for developing a high misalignment tolerant wireless charging system for electric vehicles," Measurement, Vol. 118, No. 1, 237-245, 2018.
5. Hafez, O. and K. Bhattacharya, "Optimal design of electric vehicle charging stations considering various energy resources," Renewable Energy, Vol. 107, No. 1, 576-589, 2018.
6. Joseph, P. K. and D. Elangovan, "A review on renewable energy powered wireless power transmission techniques for light electric vehicle charging applications," Journal of Energy Storage, Vol. 16, No. 1, 145-155, 2018.
7. Ahn, D. and S. Hong, "A study on magnetic field repeater in wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, 360-371, 2013.
8. Ahn, D., M. Kiani, and M. Ghovanloo, "Enhanced wireless power transmission using strong paramagnetic response," IEEE Transactions on Magnetics, Vol. 50, No. 3, 96-103, 2014.
9. Ahn, D. and S. Hong, "A transmitter or a receiver consisting of two strongly coupled resonators for enhanced resonant coupling in wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 61, No. 3, 1193-1203, 2014.
10. Lu, Z. J., X. T. Ma, W. C. Tang, Z. Y. Yu, and H. Y. Zhang, "High efficiency wireless energy transmission technology based on loading auxiliary coils," Journal of North China Electric Power University (Natural Science Edition), Vol. 45, No. 1, 66-72, 2018.
11. Li, X. H., L. J. Gong, and Y. Li, "The influence of coil orientation on the performance of magnetically coupled resonant wireless power transmission system," Science and Technology and Engineering, Vol. 17, No. 26, 62-68, 2017.
12. Wang, J. H., J. G. Li, S. L. Ho, W. N. Fu, Y. Li, H. L. Yu, and M. G. Sun, "Lateral and angular misalignments analysis of a new PCB circular spiral resonant wireless charger," IEEE Transactions on Magnetics, Vol. 48, No. 11, 4522-4525, 2012.
13. Yin, J. B., Design Method of Coupled System Based on Asymmetric Structure and Research on Characteristics of Wireless Energy Transmission, Tianjin Polytechnic University Press, 2018.
14. Karaca, O., F. Kappeler, D. Waldau, R. N. Kennel, and J. Rackles, "Eigenmode analysis of a multiresonant wireless energy transfer system," IEEE Transactions on Industrial Electronics, Vol. 61, No. 8, 4134-4141, 2014.
15. Lan, J. Y., H. J. Tang, and X. Gen, "Frequency splitting analysis of wireless power transfer system based on T-type transformer model," Elektronika Ir Elektrotechnika, Vol. 19, No. 10, 109-113, 2013.
16. Zhang, Y. M. and Z. M. Zhao, "Frequency splitting analysis of two-coil resonant wireless power transfer," IEEE Antennas and Wireless Propagation Letters, Vol. 13, No. 1, 400-402, 2014.
17. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, D. Erni, and J. L. W. Li, "A method of using non-identical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6097-6107, 2015.
18. Narayanamoorthi, R., J. Vimala, P. Sanjeevikumar, M. P. Lucian, and C. Bharatiraja, "Frequency splitting elimination and cross-coupling rejection of wireless power transfer to multiple dynamic receivers," Applied Sciences, Vol. 8, No. 2, 179-197, 2018.
19. Li, Z. Q., S. D. Huang, J. L. Yi, and J. J. Li, "Suppression method of frequency splitting for magnetically coupled resonant wireless power transmission system," Automation of Electric Power Systems, Vol. 41, No. 2, 21-27, 2017.
20. Huang, X. L., Q. J. Ji, L. L. Tan, W. Wang, J. M. Zhao, and Y. L. Zhou, "Study on series-parallel model of wireless power transfer via magnetic resonance coupling," Transactions of China Electrotechnical Society, Vol. 28, No. 3, 171-187, 2013.
21. Tan, L. L., Research on Characteristic and Control Strategies for Magnetic Resonance Coupled Wireless Power System, Southeast University Press, 2014.
22. Tian, Z. J., X. X. Du, J. Fan, and Y. Y. Cao, "Research on repeating coil of asymmetric magnetic coupling," Industry and Mine Automation, Vol. 41, No. 12, 35-39, 2015.