Vol. 80
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-12-17
High Selective and Wide-Stopband Bandpass Filter Using Simple Uniform Impedance Resonators
By
Progress In Electromagnetics Research Letters, Vol. 80, 135-141, 2018
Abstract
A fifth-order bandpass filter with high selectivity and wide-stopband by using quarter- and half-wavelength uniform impedance resonators (UIRs) is presented in this letter. The use of a terminated coupled line provides controllable transmission zeros that can suppress the parasitic passbands. A pair of transmission zeros is generated on both sides of the passband by introducing cross-coupling. As a result, high selectivity and wide stopband can be achieved simultaneously. The method of controlling transmission zeros using a coupled line and an open/short-circuited stub is analyzed, and the method of improving passband selectivity using cross-coupling is given in detais. The concept is experimentally tested in a microstrip bandpass filter with center frequency 1 GHz. The measured attenuation is better than 24 dB up to 18 GHz.
Citation
Kai-Ran Xiang, and Fu-Chang Chen, "High Selective and Wide-Stopband Bandpass Filter Using Simple Uniform Impedance Resonators," Progress In Electromagnetics Research Letters, Vol. 80, 135-141, 2018.
doi:10.2528/PIERL18102601
References

1. Kuo, T.-N., W.-C. Li, C.-H. Wang, and C. H. Chen, "Wide-stopband microstrip bandpass filters using quarter-wavelength stepped impedance resonators and bandstop embedded resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 18, No. 6, 389-391, Jun. 2008.
doi:10.1109/LMWC.2008.922609

2. Huang, C.-Y., M.-H. Weng, C.-S. Ye, and Y.-X. Xu, "A high band isolation and wide stopband diplexer using dual-mode stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 100, 299-308, 2010.
doi:10.2528/PIER09112701

3. Wu, H.-W., S.-K. Liu, M.-H. Weng, and C.-H. Hung, "Compact microstrip bandpass filter with multispurious suppression," Progress In Electromagnetics Research, Vol. 107, 21-30, 2010.
doi:10.2528/PIER10061601

4. Akra, M., E. Pistono, H. Issa, A. Jrad, and P. Ferrari, "Full study of the parallel-coupled stub-loaded resonators: Synthesis method in a narrow band with an extended optimal rejection bandwidth," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 12, 3380-3392, Dec. 2014.
doi:10.1109/TMTT.2014.2364599

5. Tang, C., X. Q. Lin, W. M. Liu, and Y. Fan, "Wide stopband bandpass filters based on quarter-wavelength resonators," IET Microw. Antennas Propag., Vol. 11, No. 10, 1379-1388, Aug. 2017.
doi:10.1049/iet-map.2016.0785

6. Chen, F. C., et al. "Design of wide-stopband bandpass filter and diplexer using uniform impedance resonators," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 12, 4192-4203, Dec. 2016.
doi:10.1109/TMTT.2016.2613056

7. He, Z. S., Z. H. Shao, and C. J. You, "Parallel feed bandpass filter with high selectivity and wide stopband," Electron. Lett., Vol. 52, No. 10, 844-846, May 2016.
doi:10.1049/el.2015.3345

8. Weng, S.-C., K.-W. Hsu, and W.-H. Tu, "Compact and switchable dual-band bandpass filter with high selectivity and wide stopband," Electron. Lett., Vol. 49, No. 20, 1275-1277, Sep. 2017.
doi:10.1049/el.2013.2154

9. Killamsetty, V. K. and B. Mukherjee, "Miniaturised highly selective bandpass filter with very wide stopband using meander coupled lines," Electron. Lett., Vol. 53, No. 13, 889-890, Jun. 2017.
doi:10.1049/el.2017.1270

10. Thomas, J. B., "Cross-coupling in coaxial cavity filters - A tutorial overview," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 4, 1368-1376, Apr. 2003.
doi:10.1109/TMTT.2003.809180

11. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems Fundamentals Design and Applications, Wiley, 2007.