Vol. 82
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-03
Bandwidth Enhancement of Low-Profile SIW Cavity Antenna with Bilateral Slots
By
Progress In Electromagnetics Research Letters, Vol. 82, 25-32, 2019
Abstract
A novel design to enhance the bandwidth of a low-profile substrate integrated waveguide (SIW) cavity antenna is presented. Distinct from traditional antennas with unilateral slots, bilateral slots are utilized as radiating elements in the proposed design. By etching an additional slot at the bottom plane, a new resonant mode is introduced, and quality factors of two original modes are significantly reduced. Antenna's bandwidth can be dramatically enhanced by merging these three modes within a single operating band. A prototype is fabricated and measured. With the height of 0.018λ0, the measured 10-dB bandwidth is 410 MHz (3.24-3.65 GHz), corresponding to 11.9% fractional bandwidth. The measured gain is higher than 4.3 dBi, and the measured efficiency is around 75% within the operation band. Those attractive features, e.g. low profile, enhanced bandwidth and moderate radiation performance, make the proposed antenna suitable for future 5G systems.
Citation
Bingjian Niu, and Jie-Hong Tan, "Bandwidth Enhancement of Low-Profile SIW Cavity Antenna with Bilateral Slots," Progress In Electromagnetics Research Letters, Vol. 82, 25-32, 2019.
doi:10.2528/PIERL18102505
References

1. Luk, K. M., "The importance of the new developments in antennas for wireless communications," Proceedings of the IEEE, Vol. 99, No. 12, 2082-2084, Dec. 2011.
doi:10.1109/JPROC.2011.2167430

2. Shu, P. and Q. Feng, "Design of a compact quad-band hybrid antenna for compass/WiMAX/WLAN applications," Progress In Electromagnetics Research, Vol. 138, 585-598, 2013.
doi:10.2528/PIER13022708

3. Khalichi, B., S. Nikmehr, and A. Pourziad, "Reconfigurable SIW antenna based on RF-MEMS switches," Progress In Electromagnetics Research, Vol. 142, 189-205, 2013.
doi:10.2528/PIER13070204

4. Luo, G. Q., T. Y. Wang, and X. H. Zhang, "Review of low profile substrate integrated waveguide cavity backed antennas," International Journal of Antennas and Propagation, Vol. 2013, Art. No. 746920, Oct. 2013.

5. Zhai, G., Z. N. Chen, and X. Qing, "Enhanced isolation of a closely spaced four-element MIMO antenna system using metamaterial mushroom," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3362-3370, Aug. 2015.
doi:10.1109/TAP.2015.2434403

6. Saghati, A. P., A. P. Saghati, and K. Entesari, "An ultra-miniature SIW cavity-backed slot antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 313-316, 2017.
doi:10.1109/LAWP.2016.2574764

7. Yun, S., D. Y. Kim, and S. Nam, "Bandwidth and efficiency enhancement of cavity-backed slot antenna using a substrate removal," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1458-1461, 2012.

8. Awida, M. H., S. H. Suleiman, and A. E. Fathy, "Substrate-integrated cavity- backed patch arrays: a low-cost approach for bandwidth enhancement," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1155-1163, Apr. 2011.
doi:10.1109/TAP.2011.2109681

9. Yang, W. and J. Zhou, "Wideband low-profile substrate integrated waveguide cavity-backed E-shaped patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 12, 143-146, 2013.
doi:10.1109/LAWP.2013.2241011

10. Maged, M. A., F. Elhefnawi, H. Akah, A. El-Akhdar, and H. El-Hennawy, "Design and realization of circular polarized SIW slot array antenna for cubesat intersatellite links," Progress In Electromagnetics Research Letters, Vol. 77, 81-88, 2018.
doi:10.2528/PIERL18040704

11. Chaturvedi, D. and S. Raghavan, "Compact QMSIW based antennas for WLAN/WBAN applications," Progress In Electromagnetics Research C, Vol. 82, 145-153, 2018.
doi:10.2528/PIERC18012003

12. Luo, G. Q., Z. F. Hu, W. J. Li, X. H. Zhang, L. L. Sun, and J. F. Zheng, "Bandwidth-enhanced low-profile cavity-backed slot antenna by using hybrid SIW cavity modes," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1698-1704, Apr. 2012.
doi:10.1109/TAP.2012.2186226

13. Mukherjee, S., A. Biswas, and K. V. Srivastava, "Broadband substrate integrated waveguide cavity-backed bow-tie slot antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1152-1155, 2014.
doi:10.1109/LAWP.2014.2330743

14. Huang, J.-Q., D. Lei, C. Jiang, Z. Tang, F. Qiu, M. Yao, and Q.-X. Chu, "Novel circularly polarized SIW cavity-backed antenna with wide CP beamwidth by using dual orthogonal slot split rings," Progress In Electromagnetics Research C, Vol. 73, 97-104, 2017.
doi:10.2528/PIERC17021706

15. Yun, S., D. Y. Kim, and S. Nam, "Bandwidth enhancement of cavity-backed slot antenna using a via-hole above the slot," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1092-1095, 2012.

16. Shi, F. Y., J. Liu, and Y. Long, "Wideband triple- and quad-resonance substrate integrated waveguide cavity-backed slot antennas with shorting vias," IEEE Trans. Antennas Propag., Vol. 65, No. 11, 5768-5775, Nov. 2017.
doi:10.1109/TAP.2017.2755118

17. Niu, B. J. and Q. Y. Feng, "Bandwidth enhancement of CPW-Fed antenna based on epsilon negative zeroth- and first-order resonators," IEEE Antennas Wireless Propag. Lett, Vol. 12, 1125-1128, 2013.
doi:10.1109/LAWP.2013.2280952

18. Ban, Y., C. Li, G. Sim, G. Wu, and K. L. Wong, "4G/5G multiple antennas for future multi-mode smartphone applications," IEEE Access, Vol. 4, 2981-2988, 2016.
doi:10.1109/ACCESS.2016.2582786

19. Li, Z., Y. Sun, M. Yang, Z. Wu, and P. Tang, "A broadband dual-polarized magneto-electric dipole antenna for 2G/3G/LTE/WiMAX applications ," Progress In Electromagnetics Research C, Vol. 73, 127-136, 2017.
doi:10.2528/PIERC17022005