Vol. 80
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-01
Low Specific Absorption Rate Antenna Using Electromagnetic Band Gap Structure for Long Term Evolution Band 3 Application
By
Progress In Electromagnetics Research M, Vol. 80, 23-34, 2019
Abstract
With the progress of technologies though the years, the extent of electromagnetic radiations has increased in our environment, so there are increased concerns about health for wireless device users. It has become a necessity to use devices with low Specific Absorption Rate (SAR) to reduce human exposure to the effects of Electromagnetic Fields (EM fields). In this article, the design of a circular microstrip antenna (CMSA) with and without an electromagnetic band gap (EBG) structure is proposed. It is evident from simulated results that CMSA with EBG gives low SAR as compared to CMSA without EBG for the proposed prototype. M-shaped unit cell structure of EBG is designed for 1812 MHz resonance frequency, and a bandwidth of 244 MHz is achieved using CMSA with EBG for LTE Band 3. SAR is reduced by 76.25% when CMSA is used with EBG in comparison to CMSA without EBG.
Citation
Mahesh Munde, Anil Nandgaonkar, and Shankar B. Deosarkar, "Low Specific Absorption Rate Antenna Using Electromagnetic Band Gap Structure for Long Term Evolution Band 3 Application," Progress In Electromagnetics Research M, Vol. 80, 23-34, 2019.
doi:10.2528/PIERM18102103
References

1. International Non-Ionizing Radiation Committee of the International Radiation Protection Association "Guidelines on limits on exposure to radio frequency electromagnetic fields in the frequency range from 100 kHz to 300 GHz," Health Physics, Vol. 54, No. 1, 115-123, 1988.

2. Zhao, K., S. Zhang, Z. Ying, T. Bolin, and S. He, "SAR study of different MIMO antenna designs for LTE application in smart mobile handsets," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3270-3279, June 2013.
doi:10.1109/TAP.2013.2250239

3. Gómez-Villanueva H. Jardón-Aguilar, R. L. Miranda, R., "State of the art methods for low SAR antenna implementation," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-4, Barcelona, Spain, 2010.

4. Islam, M. T., M. R. I. Faruque, and N. Misran, "Reduction of specific absorption rate (SAR) in the human head with ferrite material and metamaterial," Progress In Electromagnetics Research C, Vol. 9, 47-58, 2009.
doi:10.2528/PIERC09062303

5. Yang, F. and Y. Rahmat-Samii, "A low profile circularly polarized curl antenna over an EBG surface," Microwave Optical Technology Letters, Vol. 31, No. 4, 264-267, 2001.
doi:10.1002/mop.10006

6. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterization of an Electromagnetic Band Gap (EBG) surface," Proceedings of IEEE Antenna and Propagation Society, Vol. 3, 744-747, 2002.
doi:10.1109/APS.2002.1018317

7. Elsheakh, N., H. A. Elsadek, and E. A. Abdallah, "Investigated new embedded shapes of Electromagnetic Band Gap structures and via effect for improved microstrip patch antenna performance," Progress In Electromagnetics Research B, Vol. 20, 91-107, 2010.
doi:10.2528/PIERB09122004

8. Faruque, M. R. I., M. I. Hossain, and M. T. Islam, "Low specific absorption rate microstrip patch antenna for cellular phone applications," IET Microwaves, Antennas and Propagation, Vol. 9, No. 14, 1540-1546, 2015.
doi:10.1049/iet-map.2014.0861

9. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2008.
doi:10.1017/CBO9780511754531

10. Shinde, J. P. and P. N. Shinde, "M-shape electromagnetic-bandgap structures for enhancement in antenna performance," Int. J. Electronics and Communications, Vol. 70, No. 6, 842-849, 2016.
doi:10.1016/j.aeue.2016.03.012

11. Barnes, F. S. and B. Greenebaum, Bioengineering and Biophysical Aspects of Electromagnetic Fields, CRC Press LLC, 2006.

12. Christ, A., A. Klingenbock, T. Samaras, C. Goiceanu, and N. Kuster, "The dependence of electromagnetic far-field absorption on body tissue composition in the frequency range from 300 MHz to 6 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 2188-2195, 2006.
doi:10.1109/TMTT.2006.872789

13. ITIS Foundation "Dielectric properties of body tissues,", https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties.

14. Mohammad, E. G., A. Es-Salhi, and P. M. Mendes, "Shifting the half wave dipole antenna resonance using EBG structure," 27th International Conference on Microelectronics (ICM), 218-221, Casablanca, 2015.

15. Imaculate, R. and S. Raghavan, "SAR reduction using a single SRR superstrate for a dual-band antenna," Electromagnetic Biology and Medicine, Vol. 36, No. 1, 39-44, 2016.

16. Alam, T., M. R. I. Faruque, and M. T. Islam, "Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial," Applied Physics A, Vol. 122, No. 3, 2016.
doi:10.1007/s00339-016-9692-8

17. Faruque, M. R. I., M. I. Hossain, N. Misran, M. Singh, and M. T. Islam, "Metamaterial-embedded low SAR PIFA for cellular phone," PLoS ONE, Vol. 10, No. 11, 2015.
doi:10.1371/journal.pone.0142663

18. Alam, T., M. R. I. Faruque, and M. T. Islam, "Specific absorption rate reduction of multi-standard mobile antenna with double-negative metamaterial," Electronics Letters, Vol. 51, No. 13, 970-971, 2015.
doi:10.1049/el.2015.1141

19. Sultan, K., H. Abdullah, E. A. Abdallah, and E. A. Hashish, "Low SAR, compact and multiband antenna," PIERS Proceedings, 748-751, Taipei, March 25–28, 2013.

20. Sultan, K., H. Abdullah, E. A. Abdallah, and E. A. Hashish, "Low-SAR, miniaturized printed antenna for mobile, ISM, and WLAN services," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1106-1109, 2013.
doi:10.1109/LAWP.2013.2280955

21. Faruque, M. R. I., M. T. Islam, and N. Misran, "Electromagnetic (EM) absorption reduction in a muscle cube with metamaterial attachment," Medical Engineering & Physics, Vol. 33, No. 5, 646-652, 2011.
doi:10.1016/j.medengphy.2010.12.004