Vol. 76
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-04
Simulation-Driven Design for a Hybrid Lumped and Distributed Dual-Band Stub Using Input and Output Space Mapping
By
Progress In Electromagnetics Research M, Vol. 76, 133-141, 2018
Abstract
In this paper, a dual-band stub (DBS) comprising one lumped kernel circuit unit cell (KCUC) and two distributed uniform transmission lines is presented. An odd-even mode resonant frequency ratio (OEMRFR) is introduced, which can determine all the element values in the DBS circuit model. Its phase and impedance bandwidth properties are extracted based on the image parameter theory. By adjusting the OEMRFR value, the second working bandwidth and structural size can be controlled simultaneously. On the other hand, the input and output space mapping (IOSM) is exploited to realize a planar microstrip DBS by transferring the lumped KCUC into a quasi-lumped formation. The established ISOM design process is fully automated and can generate the finalized DBS layout with just a few full-wave simulations. A DBS operative at WLAN dual frequencies of 2.4/5.8 GHz with extended bandwidth is designed as an example. Good agreement between the measured and simulated results justifies both the extracted dual-band performance of the proposed DBS and its customized IOSM design process.
Citation
Jianqiang Gong, Yuhao Wang, and Chaoqun Zhang, "Simulation-Driven Design for a Hybrid Lumped and Distributed Dual-Band Stub Using Input and Output Space Mapping," Progress In Electromagnetics Research M, Vol. 76, 133-141, 2018.
doi:10.2528/PIERM18101403
References

1. Lin, I.-H., M. D. Vincentis, C. Caloz, et al. "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1142-1149, 2004.
doi:10.1109/TMTT.2004.825747

2. Chang, L. and T.-G. Ma, "Dual-mode branch-line/rat-race coupler using composite right-/left-handed lines," IEEE Microw. Wireless Comp. Lett., Vol. 27, No. 5, 449-451, 2017.
doi:10.1109/LMWC.2017.2690851

3. Bonache, J., G. Sisó, M. Gil, et al. "Application of composite right/left handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual-band microwave components," IEEE Microw. Wireless Comp. Lett., Vol. 18, No. 8, 524-526, 2008.
doi:10.1109/LMWC.2008.2001011

4. Durán-Sindreu, M., G. Sisó, J. Bonache, et al. "Planar multi-band microwave components based on the generalized composite right/left handed transmission line concept," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, 3882-3891, 2010.

5. Selga, J., A. Rodríguez, V. E. Boria, et al. "Synthesis of split-rings-based artificial transmission lines through a new two-step, fast converging, and robust aggressive space mapping (ASM) algorithm," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 6, 2295-2308, 2013.
doi:10.1109/TMTT.2013.2259254

6. Caloz, C., "Metamaterial dispersion engineering concepts and applications," Proc. IEEE, Vol. 99, No. 10, 1711-1719, 2011.
doi:10.1109/JPROC.2011.2114631

7. Cao, W.-Q., B. Zhang, A. Liu, T. Yu, D. Guo, and Y. Wei, "Novel phase-shifting characteristic of CRLH TL and its application in the design of dual-band dual-mode dual-polarization antenna," Progress In Electromagnetics Research, Vol. 131, 375-390, 2012.
doi:10.2528/PIER12081007

8. Wu, G.-C., G. Wang, L.-Z. Hu, Y.-W. Wang, and C. Liu, "A miniaturized triple-band branch-line coupler based on simplified dual-composite right/left-handed transmission line," Progress In Electromagnetics Research C, Vol. 39, 1-10, 2013.

9. Cheng, K.-K. and S. Wong, "A novel dual-band 3-dB branch-line coupler design with controllable bandwidths," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 10, 3055-3061, 2012.
doi:10.1109/TMTT.2012.2210437

10. Page, J. E. and J. Esteban, "Dual-band matching properties of the C-section all-pass network," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 2, 827-832, 2013.
doi:10.1109/TMTT.2012.2231876

11. Bai, Y.-F., X.-H. Wang, C.-J. Gao, et al. "Design of compact quad-frequency impedance transformer using two-section coupled line," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2417-2423, 2012.
doi:10.1109/TMTT.2012.2202682

12. Li, X., M. Helaoui, F. Ghannouchi, et al. "A quad-band Doherty power amplifier based on T-section coupled lines," IEEE Microw. Wireless Comp. Lett., Vol. 26, No. 6, 437-439, 2016.
doi:10.1109/LMWC.2016.2559501

13. Arigong, B., J. Shao, M. Zhou, H. Ren, J. Ding, Q. Mu, Y. Li, S. Fu, H. Kim, and H. Zhang, "An improved design of dual-band 3 dB 180° directional coupler," Progress In Electromagnetics Research C, Vol. 56, 153-162, 2015.
doi:10.2528/PIERC15011204

14. Koziel, S., J. W. Bandler, and K. Madsen, "A space-mapping framework for engineering optimization - Theory and implementation," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3721-3730, 2006.
doi:10.1109/TMTT.2006.882894

15. Hsu, C.-L., J.-T. Kuo, and C.-W. Chang, "Miniaturized dual-band hybrid couplers with arbitrary power division ratios," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 1, 149-156, 2009.
doi:10.1109/TMTT.2008.2009036

16. The Mathworks Inc. MATLAB Optimization Toolbox User’s Guide, Version R2016b, Natick, 2015.

17. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2012.

18. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, 2001.
doi:10.1002/0471221619

19. The ANSYS Inc. ANSYS Electronics Desktop Online Help, Version 16.0.0, Pittsburgh, 2015.

20. Nosrati, M. and M. Daneshmand, "Substrate integrated waveguide L-shaped iris for realization of transmission zero and evanescent-mode pole," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 7, 2310-2320, 2017.
doi:10.1109/TMTT.2017.2679011