Vol. 80
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-11-23
A Tuning Fork Shaped Differential Dipole Antenna with Floating Reflectors
By
Progress In Electromagnetics Research Letters, Vol. 80, 47-52, 2018
Abstract
In this letter, a tuning fork shaped, differential dipole antenna, with two floating reflectors, is presented. The dipole antenna resonates at 1.22 GHz and has a fractional bandwidth (FBW) of 16.39% and a differential impedance of 100 Ω. The proposed antenna is composed of quarter wavelength tuning fork shaped dipole arms in the top layer. To improve robustness, while connecting to the differential circuits, two floating reflectors are used on the bottom layer, beneath the dipole arm. This method helps improving the gain by 7%. A microstrip-to-coplanar strip line (CPS) transition is designed to measure the stand-alone differential antenna. The measured gain and efficiency of the antenna are 2.14 dBi and 84%, respectively, at the resonant frequency. The possible targeted applications are circuits with differential inputs/outputs, like energy harvesting circuits, radio frequency tags, wireless communications and any other wireless sensor network nodes. Details of the design along with simulated and experimental results are presented and discussed.
Citation
Rida Gadhafi, Dan Cracan, Ademola Akeem Mustapha, and Mihai Sanduleanu, "A Tuning Fork Shaped Differential Dipole Antenna with Floating Reflectors," Progress In Electromagnetics Research Letters, Vol. 80, 47-52, 2018.
doi:10.2528/PIERL18100902
References

1. Ding, C. and K. M. Luk, "Compact differential fed dipole antenna with wide bandwidth stable gain and low cross polarization," Electronic Letters, Vol. 53, No. 15, 1019-1021, 2017.
doi:10.1049/el.2017.1972

2. Xue, Q., X. Zhang, and C. H. Chin, "A novel differential fed patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 5, No. 1, 471-474, 2006.
doi:10.1109/LAWP.2006.885168

3. Scorcioni, S., L. Larcher, and A. Bertacchini, "A reconfigurable differential CMOS RF energy scavenger with 60% peak efficiency and 21 dBm sensitivity," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 3, 155-157, 2013.
doi:10.1109/LMWC.2013.2243376

4. Powell, J. and A. Chandrakasan, "Differential and single ended elliptical antennas for 3.1-10.6 GHz ultra-wideband communication," IEEE Antennas Propag. Symposium, Vol. 3, 2935-2938, 2004.
doi:10.1109/APS.2004.1331993

5. Schantz, H., "Planar elliptical element ultra-wideband dipole antennas," IEEE Antennas Propag. Symposium, Vol. 3, 44, 2002.

6. Liu, N. W., L. Zhu, W. W. Choi, and J. D. Zhang, "A differential fed microstrip patch antenna with bandwidth enhancement under operation of TM10 and TM30 modes," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1607-1614, 2007.
doi:10.1109/TAP.2017.2670329

7. Zhang, H. and H. Xin, "A dual band dipole antenna with integrated balun," IEEE Trans. Antennas Propag., Vol. 57, No. 3, 786-789, 2009.
doi:10.1109/TAP.2009.2013440

8. Pepe, D., L. Vallozi, H. Rogier, and D. Zito, "Planar differential antenna for short range UWB pulse radar sensor," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1527-1530, 2013.
doi:10.1109/LAWP.2013.2291957

9. Liu, N. W., L. Zhu, W. W. Choi, and J. D. Zhang, "A novel differential fed patch antenna on stepped impedance resonator with enhanced bandwith under dual resonance," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4618-4625, 2016.
doi:10.1109/TAP.2016.2606583

10. Tang, Z., J. Liu, and Y. Yin, "Enhanced cross polarization discrimination of wideband differentially fed dual polarized antenna via a shorting loop," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 8, 1454-1458, 2018.
doi:10.1109/LAWP.2018.2849221

11. Le, T., K. Mayaram, and T. Fiez, "Efficient far field energy harvesting for passively powered sensor networks," IEEE J. Solid-State Circuits, Vol. 43, No. 5, 1287-1302, 2008.
doi:10.1109/JSSC.2008.920318

12. Arrawatia, M., M. S. Bhaghni, and G. Kumar, "Differential microstrip antenna for energy harvesting," IEEE. Trans. Antennas Propag., Vol. 63, No. 4, 1581-1588, 2015.
doi:10.1109/TAP.2015.2399939

13. Liu, Y. Y. and Z. H. Tu, "Differential enhanced broadband dual polarized printed dipole antenna for base stations," Microwave and Opt. Tech. Letters, Vol. 58, No. 12, 2864-2868, 2016.
doi:10.1002/mop.30163

14. Xie, J.-J. and Q. Song, "Wideband dual-polarized dipole antenna with differential feeds," Progress In Electromagnetics Research Letters, Vol. 59, 43-49, 2016.
doi:10.2528/PIERL16020101

15. Electrical Specifications Data Sheet, , , [online], available at www.markimicrowave.com.

16. Gadhafi, R. and M. Sanduleanu, "A modified Patch Antenna with square-open loop resonator slot for improved bandwidth performance for in WiFi applications," Adv. in Science, Tech. and Engineering Systems J., Vol. 2, No. 3, 1467-1471, 2017.
doi:10.25046/aj0203183