Vol. 80
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-12-05
Grade Nested Array with Increased Degrees of Freedom for Quasi-Stationary Signals
By
Progress In Electromagnetics Research Letters, Vol. 80, 75-82, 2018
Abstract
In this paper, a grade nested array constituted by a uniform linear array and a grade linear array with uniformly increasing inter-element is presented. The closed-form expression of the proposed array geometries and corresponding direction-of-arrival (DOA) estimation algorithm are derived. Theory analysis certifies that the proposed grade nested array can provide higher degrees of freedom (DOF) than some existing nested arrays. Some simulations are also presented to demonstrate the improved performance of the proposed nested array for DOA estimation of quasi-stationary signals.
Citation
Sheng Liu, Jing Zhao, Decheng Wu, and Hailin Cao, "Grade Nested Array with Increased Degrees of Freedom for Quasi-Stationary Signals," Progress In Electromagnetics Research Letters, Vol. 80, 75-82, 2018.
doi:10.2528/PIERL18100604
References

1. Min, S., D. K. Seo, B. H. Lee, M. Kwon, and Y. H. Lee, "Direction of-arrival tracking scheme for DS/CDMA systems: Direction lock loop," IEEE Trans. Wireless Communication, Vol. 3, No. 99, 191-202, 2004.
doi:10.1109/TWC.2003.821215

2. Yang, M., L. Sun, X. Yuan, and B. X. Chen, "A new nested MIMO array with increased degrees of freedom and hole-free difference coarray," IEEE Signal Processing Letters, Vol. 25, No. 1, 40-44, 2018.
doi:10.1109/LSP.2017.2766294

3. Yao, B., Z. Dong, W. Zhang, W. Wang, and Q. Wu, "Degree-of-freedom strengthened cascade array for DOD-DOA estimation in MIMO array systems," Sensors, Vol. 18, No. 5, 1557, 2018.
doi:10.3390/s18051557

4. Moffet, A., "Minimum-redundancy linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 16, No. 2, 172-175, 1968.
doi:10.1109/TAP.1968.1139138

5. Vaidyanathan, P. P. and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Transactions on Signal Processing, Vol. 59, No. 2, 573-586, 2011.
doi:10.1109/TSP.2010.2089682

6. Qin, S., Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Transactions on Signal Processing, Vol. 63, No. 6, 1377-1390, 2015.
doi:10.1109/TSP.2015.2393838

7. Pal, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Transactions on Signal Processing, Vol. 58, No. 8, 4167-4181, 2010.
doi:10.1109/TSP.2010.2049264

8. Yang, M., L. Sun, X. Yuan, and B. X. Chen, "Improved nested array with hole-free DCA and more degrees of freedom," Electronics Letters, Vol. 52, No. 9, 2068-2070, 2016.
doi:10.1049/el.2016.3197

9. Iizuka, Y. and K. Ichige, "Extension of nested array for large aperture and high degree of freedom," IEICE Communications Express, Vol. 6, No. 6, 381-386, 2017.
doi:10.1587/comex.2017XBL0031

10. Liu, S., L. S. Yang, D. Li, and H. L. Cao, "Subspace extension algorithm for 2D DOA estimation with L-shaped sparse array," Multidimensional Systems & Signal Processing, Vol. 28, 315-327, 2017.
doi:10.1007/s11045-016-0406-3

11. Liu, S., J. Zhao, and Z. G. Xiao, "DOA estimation with sparse array under unknown mutual coupling," Progress In Electromagnetics Research Letters, Vol. 70, 147-153, 2017.
doi:10.2528/PIERL17081701

12. Huang, H., B. Liao, X. Wang, X. S. Guo, and J. Huang, "A new nested array configuration with increased degrees of freedom," IEEE Access, Vol. 6, 1490-1497, 2018.
doi:10.1109/ACCESS.2017.2779171

13. Shen, Q., W. Liu, and W. Cui, "Extension of nested arrays with the fourth-order difference co-array enhancement," IEEE International Conference on Acoustics, Speech and Signal Processing, 2991-2995, Shanghai, China, 2016.

14. Ahmed, A., Y. D. Zhang, and B. Himed, "Effective nested array design for fourth-order cumulant-based DOA estimation," IEEE Radar Conference, 0998-1002, Seattle, WA, USA, 2017.

15. Zhang, L., S. Ren, and X. Li, "Generalized L-shaped nested array concept based on the fourth-order difference co-array," Sensors, Vol. 18, 8, 2018.

16. Ma, W. K., T. H. Hsieh, and C. Y. Chi, "DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance a Khatri-Rao subspace approach," IEEE Transactions on Signal Processing, Vol. 58, No. 9, 2168-2180, 2010.
doi:10.1109/TSP.2009.2034935

17. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas & Propagation, Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830