Vol. 77
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-02
A Circularly Polarized Dual-Axis Wide-Angle Rectenna Employing a Dual-Feed Array Antenna with Inclined Patches
By
Progress In Electromagnetics Research M, Vol. 77, 135-145, 2019
Abstract
In this paper, a novel circularly polarized rectenna using a dual-feed array antenna with inclined patches is proposed to provide a dual-axis wide-angle reception capability. A new conical and pencil dualbeam circularly polarized array antenna integrating planar magic-Ts is designed and fabricated to overcome the polarization and main-beam misalignment between the transmitting and receiving antennas. To improve the rectenna's output power, open stub matching networks are used to achieve the impedance matching between the antenna and rectifying diodes. Two types of circularly polarized dual-axis rectennas which respectively allow the parallel and series connections of two diodes are experimentally evaluated and compared to confirm the wide-angle reception capabilities in the x-z and y-z planes.
Citation
Thet Paing Phyoe, Eisuke Nishiyama, and Ichihiko Toyoda, "A Circularly Polarized Dual-Axis Wide-Angle Rectenna Employing a Dual-Feed Array Antenna with Inclined Patches," Progress In Electromagnetics Research M, Vol. 77, 135-145, 2019.
doi:10.2528/PIERM18100505
References

1. Brown, W. C., "The history of power transmission by radio wave," IEEE Trans. Microwave Theory & Tech., Vol. 32, No. 9, 1230-1242, 1984.
doi:10.1109/TMTT.1984.1132833

2. Akkermans, J. A. G., M. C. V. Beurden, G. J. N. Doodeman, and H. J. Visser, "Analytical models for low-power rectenna design," IEEE Antennas and Wireless Propag. Lett., Vol. 4, 187-190, 2005.
doi:10.1109/LAWP.2005.850798

3. Shinohara, N., "Rectenna for microwave power transmission," IEICE Electronics Express, Vol. 10, No. 21, 1-13, 2013.
doi:10.1587/elex.10.20132009

4. Olgun, U., C.-C. Chen, and J. L. Volakis, "Investigation of rectenna array configurations for enhanced RF power harvesting," IEEE Anten. and Wireless Propag. Lett., Vol. 10, 262-265, 2011.
doi:10.1109/LAWP.2011.2136371

5. Satow, H., E. Nishiyama, and I. Toyoda, "A 5.8-GHz E-plane wide-angle rectenna using magic-Ts," IEICE Trans. Commun. (Japanese Edition), Vol. J99-B, No. 6, 415-423, 2016.

6. Satow, H., Y. Tanaka, E. Nishiyama, and I. Toyoda, "An H-plane wide-angle rectenna using an in-phase/anti-phase dual-feed antenna," Proc. 2016 Int’l Symp. Antennas and Propag. (ISAP2016), POS1-124, 532–533, Okinawa, Japan, 2016.

7. Phyoe, T. P., H. Satow, E. Nishiyama, and I. Toyoda, "A dual-axis wide-angle rectenna using a triple-feed array antenna," Proc. 2017 Int’l Symp. Antennas and Propag. (ISAP2017), 2B4, Phuket, Thailand, 2017.

8. Lee, D.-J., S.-J. Lee, I.-J. Hwang, W.-S. Lee, J.-W. Yu, and K. Chang, "Hybrid power combining rectenna array for wide incident angle coverage in RF energy transfer," IEEE Trans. Microwave Theory & Tech., Vol. 65, No. 9, 3409-3418, 2017.
doi:10.1109/TMTT.2017.2678498

9. Strassner, B. and K. Chang, "5.8-GHz circularly polarized dual-rhombic-loop traveling-wave rectifying antenna for low power-density wireless power transmission applications," IEEE Trans. Microwave Theory & Tech., Vol. 51, No. 5, 1548-1553, 2003.
doi:10.1109/TMTT.2003.810137

10. Ren, Y.-J. and K. Chang, "New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission," IEEE Trans. Microwave Theory & Tech., Vol. 54, No. 7, 2970-2976, 2006.
doi:10.1109/TMTT.2006.877422

11. Phyoe, T. P., E. Nishiyama, and I. Toyoda, "Design of a conical/pencil dual-beam array antenna using planar magic-Ts," Proc. 2017 Asian Workshop on Antennas and Propag. (AWAP2017), 57-58, Sapporo, Japan, 2017.

12. Phyoe, T. P., E. Nishiyama, and I. Toyoda, "A 5-8-GHz dual-axis monopulse microstrip array antenna using dual-feed network," Proc. 2018 Asia-Pacific Microwave Conf. (APMC2018), FR3-IF-24, Kyoto, Japan, 2018.

13. Toyoda, I. and E. Nishiyama, "Advanced planar rectenna technology," Proc. 11th Asia-Pacific Eng. Res. Forum on Microwaves and Electromagnetic Theory (APMET2016), 1-7, Nagasaki, Japan, 2016.

14. Aikawa, M. and H. Ogawa, "Double-sided MICs and their applications," IEEE Trans. Microwave Theory & Tech., Vol. 37, No. 2, 406-413, 1989.
doi:10.1109/22.20068

15. Aikawa, M. and E. Nishiyama, "Compact MIC magic-T and the integration with planar array antenna," IEICE Trans. Electron., Vol. E95-C, No. 10, 1560-1565, 2012.
doi:10.1587/transele.E95.C.1560

16. Toyoda, I. and E. Nishiyama, "Rectenna design using electromagnetic field simulation including nonlinear devices," Proc. 2017 IEEE Int’l Conf. Computational Electromagnetics (ICCEM2017), 2B1.5, 130–132, Kumamoto, Japan, 2017.

17. Takahashi, J., E. Nishiyama, and I. Toyoda, "A differential rectenna with matching shorted stubs," Proc. 2015 IEEE 4th Asia-Pacific Conf. Antennas and Propag. (APCAP2015), 445-446, Bail Island, Indonesia, 2015.

18. Takahashi, J., E. Nishiyama, and I. Toyoda, "Experimental study on load resistance design of a differential rectenna," Proc. 2015 Int’l Symp. Antennas and Propag. (ISAP2015), S1.4.1, 223–225, Hobart, Australia, 2015.

19. Phyoe, T. P., H. Satow, E. Nishiyama, and I. Toyoda, "Design of a dual-axis wide-angle rectenna with matching networks," Proc. 2017 Int’l Conf. Science and Engineering (ICSE2017), 395-398, Yangon, Myanmar, 2017.