1. Brown, W. C., "The history of power transmission by radio wave," IEEE Trans. Microwave Theory & Tech., Vol. 32, No. 9, 1230-1242, 1984.
doi:10.1109/TMTT.1984.1132833
2. Akkermans, J. A. G., M. C. V. Beurden, G. J. N. Doodeman, and H. J. Visser, "Analytical models for low-power rectenna design," IEEE Antennas and Wireless Propag. Lett., Vol. 4, 187-190, 2005.
doi:10.1109/LAWP.2005.850798
3. Shinohara, N., "Rectenna for microwave power transmission," IEICE Electronics Express, Vol. 10, No. 21, 1-13, 2013.
doi:10.1587/elex.10.20132009
4. Olgun, U., C.-C. Chen, and J. L. Volakis, "Investigation of rectenna array configurations for enhanced RF power harvesting," IEEE Anten. and Wireless Propag. Lett., Vol. 10, 262-265, 2011.
doi:10.1109/LAWP.2011.2136371
5. Satow, H., E. Nishiyama, and I. Toyoda, "A 5.8-GHz E-plane wide-angle rectenna using magic-Ts," IEICE Trans. Commun. (Japanese Edition), Vol. J99-B, No. 6, 415-423, 2016.
6. Satow, H., Y. Tanaka, E. Nishiyama, and I. Toyoda, "An H-plane wide-angle rectenna using an in-phase/anti-phase dual-feed antenna," Proc. 2016 Int’l Symp. Antennas and Propag. (ISAP2016), POS1-124, 532–533, Okinawa, Japan, 2016.
7. Phyoe, T. P., H. Satow, E. Nishiyama, and I. Toyoda, "A dual-axis wide-angle rectenna using a triple-feed array antenna," Proc. 2017 Int’l Symp. Antennas and Propag. (ISAP2017), 2B4, Phuket, Thailand, 2017.
8. Lee, D.-J., S.-J. Lee, I.-J. Hwang, W.-S. Lee, J.-W. Yu, and K. Chang, "Hybrid power combining rectenna array for wide incident angle coverage in RF energy transfer," IEEE Trans. Microwave Theory & Tech., Vol. 65, No. 9, 3409-3418, 2017.
doi:10.1109/TMTT.2017.2678498
9. Strassner, B. and K. Chang, "5.8-GHz circularly polarized dual-rhombic-loop traveling-wave rectifying antenna for low power-density wireless power transmission applications," IEEE Trans. Microwave Theory & Tech., Vol. 51, No. 5, 1548-1553, 2003.
doi:10.1109/TMTT.2003.810137
10. Ren, Y.-J. and K. Chang, "New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission," IEEE Trans. Microwave Theory & Tech., Vol. 54, No. 7, 2970-2976, 2006.
doi:10.1109/TMTT.2006.877422
11. Phyoe, T. P., E. Nishiyama, and I. Toyoda, "Design of a conical/pencil dual-beam array antenna using planar magic-Ts," Proc. 2017 Asian Workshop on Antennas and Propag. (AWAP2017), 57-58, Sapporo, Japan, 2017.
12. Phyoe, T. P., E. Nishiyama, and I. Toyoda, "A 5-8-GHz dual-axis monopulse microstrip array antenna using dual-feed network," Proc. 2018 Asia-Pacific Microwave Conf. (APMC2018), FR3-IF-24, Kyoto, Japan, 2018.
13. Toyoda, I. and E. Nishiyama, "Advanced planar rectenna technology," Proc. 11th Asia-Pacific Eng. Res. Forum on Microwaves and Electromagnetic Theory (APMET2016), 1-7, Nagasaki, Japan, 2016.
14. Aikawa, M. and H. Ogawa, "Double-sided MICs and their applications," IEEE Trans. Microwave Theory & Tech., Vol. 37, No. 2, 406-413, 1989.
doi:10.1109/22.20068
15. Aikawa, M. and E. Nishiyama, "Compact MIC magic-T and the integration with planar array antenna," IEICE Trans. Electron., Vol. E95-C, No. 10, 1560-1565, 2012.
doi:10.1587/transele.E95.C.1560
16. Toyoda, I. and E. Nishiyama, "Rectenna design using electromagnetic field simulation including nonlinear devices," Proc. 2017 IEEE Int’l Conf. Computational Electromagnetics (ICCEM2017), 2B1.5, 130–132, Kumamoto, Japan, 2017.
17. Takahashi, J., E. Nishiyama, and I. Toyoda, "A differential rectenna with matching shorted stubs," Proc. 2015 IEEE 4th Asia-Pacific Conf. Antennas and Propag. (APCAP2015), 445-446, Bail Island, Indonesia, 2015.
18. Takahashi, J., E. Nishiyama, and I. Toyoda, "Experimental study on load resistance design of a differential rectenna," Proc. 2015 Int’l Symp. Antennas and Propag. (ISAP2015), S1.4.1, 223–225, Hobart, Australia, 2015.
19. Phyoe, T. P., H. Satow, E. Nishiyama, and I. Toyoda, "Design of a dual-axis wide-angle rectenna with matching networks," Proc. 2017 Int’l Conf. Science and Engineering (ICSE2017), 395-398, Yangon, Myanmar, 2017.