Vol. 76
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-23
Simulating Underwater Electric Field Signal of Ship Using the Boundary Element Method
By
Progress In Electromagnetics Research M, Vol. 76, 43-54, 2018
Abstract
Seawater conductivity is an important factor that affects the corrosion electric field of ship.Athree-dimensional boundary element method (3D-BEM) combined with nonlinear polarization curve was employed to investigate the influence of seawater conductivity on the corrosion electrostatic field. Numerical simulation results show that the electric field distribution is only slightly influenced by the conductivity.However, the intensity decreases with the increases of conductivity. The simulation results of the BEM model were compared with the results of the equivalent electric dipole model, and the results obtained by the two methods had high similarity, which demonstrated that the BEM model was effective. The former is a more convenient and concise modeling method that can better reflect the distribution characteristics of ship's corrosion electric field than the electric dipole model.
Citation
Xiangjun Wang, Qinglin Xu, and Jianchun Zhang, "Simulating Underwater Electric Field Signal of Ship Using the Boundary Element Method," Progress In Electromagnetics Research M, Vol. 76, 43-54, 2018.
doi:10.2528/PIERM18092706
References

1. Holmes, J. J., "Past, present, and future of underwater sensor arrays to measure the electromagnetic field signatures of naval vessels," Marine Technology Society Journal, Vol. 49, No. 6, 123-133, 2015.
doi:10.4031/MTSJ.49.6.1

2. Doose, J., "Numerical analysis of propeller-induced low-frequency modulations in underwater electric potential signatures of naval vessels in the context of corrosion protection systems," Comsol Conference, 1-8, 2009.

3. Song, L. I., M. Shi, J. D. Luan, et al. "The feature extraction and detection for shaft-rate electric field of a ship," Acta Armamentarii, 2015.

4. Holmes, J. J., "Application of models in the design of underwater electromagnetic signature reduction systems," Naval Engineers Journal, Vol. 119, No. 4, 19-29, 2007.
doi:10.1111/j.1559-3584.2007.00083.x

5. Kumar, P. A., B. C. Mouli, and S. Ganesh, "Extraction of target parameters using underwater electric field analysis," IEEE International Conference on Communication and Electronics Systems, 1-5, 2017.

6. Lu, J. J., R. Y. Yue, and F. Yu, "Monitoring and analysis of the marine underwater electric field of the typical shallow sea area," International Conference on environment and Engineering Geophysics, 2012.

7. Li, K., "Electromagnetic fields in stratified media," Advanced Topics in Science & Technology in China, Vol. 378, No. 2, 409-415, 2009.

8. Sampaio, E. E. S., "Primary electromagnetic field in the sea induced by a moving line of electric dipoles," Wave Motion, Vol. 43, No. 2, 123-131, 2005.
doi:10.1016/j.wavemoti.2005.08.001

9. Schaefer, D., J. Doose, and M. Pichlmaier, "Conversion of UEP signatures between different environmental conditions using shaft currents," IEEE Journal of Oceanic Engineering, Vol. 41, No. 1, 105-111, 2016.
doi:10.1109/JOE.2015.2401991

10. Schaefer, D., J. Doose, and M. Pichlmaier, "Comparability of UEP signatures measured under varying environmental conditions," International Marine Electromagnetics Conference, 2013.

11. Kim, Y. S., S. K. Lee, and H. J. Chung, "Influence of a simulated deep sea condition on the cathodic protection and electric field of an underwater vehicle," Ocean Engineering, Vol. 148, 223-233, 2018.
doi:10.1016/j.oceaneng.2017.11.027

12. Santos, W. J., J. A. F. Santiago, and J. C. F. Telles, "Optimal positioning of anodes and virtual sources in the design of cathodic protection systems using the method of fundamental solutions," Engineering Analysis with Boundary Elements, Vol. 46, 67-74, 2014.
doi:10.1016/j.enganabound.2014.05.009

13. Abootalebi, O., A. Kermanpur, and M. R. Shishesaz, "Optimizing the electrode position in sacrificial anode cathodic protection systems using boundary element method," Corrosion Science, Vol. 52, 678-687, 2010.
doi:10.1016/j.corsci.2009.10.025

14. Santos, W. J., J. A. F. Santiago, and J. C. F. Telles, "Using the Gaussian function to simulate constant potential anodes in multiobjective optimization of cathodic protection systems," Engineering Analysis with Boundary Elements, Vol. 73, 35-41, 2016.
doi:10.1016/j.enganabound.2016.08.014

15. Xing, S. H., Y. Li, and H. Q. Song, "Optimization the quantity, locations and output currents of anodes to improve cathodic protection effect of semi-submersible crane vessel," Ocean Engineering, Vol. 113, 144-150, 2016.
doi:10.1016/j.oceaneng.2015.12.047

16. Kim, Y. S., J. Kim, D. Choi, et al. "Optimizing the sacrificial anode cathodic protection of the rail canal structure in seawater using the boundary element method," Engineering Analysis with Boundary Elements, Vol. 77, 36-48, 2017.
doi:10.1016/j.enganabound.2017.01.003

17. Lan, Z., X. Wang, and B. Hou, "Simulation of sacrificial anode protection for steel platform using boundary element method," Engineering Analysis with Boundary Elements, Vol. 36, No. 5, 903-906, 2012.
doi:10.1016/j.enganabound.2011.07.018

18. Wu, J. H., S. H. Xing, and C. H. Liang, "The influence of electrode position and output current on the corrosion related electro-magnetic field of ship," Advances in Engineering Software, Vol. 42, No. 10, 902-909, 2011.
doi:10.1016/j.advengsoft.2011.06.007

19. Kim, Y. S., S. K. Lee, and J. G. Kim, "Influence of anode location and quantity for the reduction of underwater electric fields under cathodic protection," Ocean Engineering, Vol. 163, 476-482, 2018.
doi:10.1016/j.oceaneng.2018.06.024

20. Hack, H. P., "Atlas of polarization diagrams for naval materials in seawater,", 1995.

21. Yue, R., P. Hu, and J. Zhang, "The influence of the seawater and seabed interface on the underwater low frequency electromagnetic field signatures," IEEE Ocean Acoustics, 1-7, 2016.