Vol. 75
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-05
A Novel Compact CRLH Bandpass Filter on CSRR-Loaded Substrate Integrated Waveguide Cavity
By
Progress In Electromagnetics Research M, Vol. 75, 121-129, 2018
Abstract
A compact composite right/left-handed (CRLH) bandpass filter with wide out-of-band rejection, which utilizes a substrate integrated waveguide (SIW) and modified complementary split-ring resonators (CSRRs) is presented. By incorporating two sets of CSRRs resonators (the top and bottom CSRRs) into SIW cavity, the proposed filter obtains a high selectivity. Besides, the filter has the CRLH property, and no additional areas are required because of the structure of the top CSRRs and the gap between them. At the same time, two slots of etched units used in feeding lines are replaced to obtain a wide out-of-band rejection. Finally, the measured results show that the filter has a wide stopband with rejection over 20 dB up to 4.3 times of the center frequency, implying that the experimental results are in good agreement with simulated ones.
Citation
Bo Yin, Zhangyao Lin, Xu Cai, Honggang Hao, Wei Luo, and Wen Huang, "A Novel Compact CRLH Bandpass Filter on CSRR-Loaded Substrate Integrated Waveguide Cavity," Progress In Electromagnetics Research M, Vol. 75, 121-129, 2018.
doi:10.2528/PIERM18092607
References

1. Zhou, C. X., P. P. Guo, K. Zhou, and W.Wu, "Design of a compact UWB filter with high selectivity and superwide stopband," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 7, 636-638, 2017.
doi:10.1109/LMWC.2017.2711509

2. Huang, L., W. Wu, X. Zhang, H. Lu, Y. Zhou, and N. C. Yuan, "A novel compact and high performance bandpass filter based on SIW and CMRC technique," AEU --- International Journal of Electronics and Communications, Vol. 82, 420-425, 2017.
doi:10.1016/j.aeue.2017.10.017

3. Parameswaran, A., P. Athira, and S. Raghavan, "Miniaturizing SIW filters with slow wave Technique," AEU — International Journal of Electronics and Communications, Vol. 84, 360-365, 2018.
doi:10.1016/j.aeue.2017.11.021

4. Liu, Z., G. Xiao, and L. Zhu, "Triple-mode bandpass filters on CSRR-loaded substrate integrated waveguide cavities," IEEE Transactions on Components Packaging and Manufacturing Technology, Vol. 6, No. 7, 1099-1105, 2016.
doi:10.1109/TCPMT.2016.2574562

5. Yang, X., L. Xin, X. Jiao, P. Zhou, S. Wu, and K. Huang, "High-sensitivity structure for the measurement of complex permittivity based on SIW," IET Science Measurement and Technology, Vol. 11, No. 5, 2017.
doi:10.1049/iet-smt.2016.0361

6. Choudhary, D. K. and R. K. Chaudhary, "A compact SIW based filtering power divider with improved selectivity using CSRR," 2017 Progress In Electromagnetics Research Symposium --- Fall (PIERS --- FALL), Singapore, Nov. 19-22, 2017.

7. Zhang, H., W. Kang, and W. Wu, "Dual-band substrate integrated waveguide bandpass filter utilising complementary split-ring resonators," Electronics Letters, Vol. 51, No. 2, 85-87, 2018.
doi:10.1049/el.2017.3478

8. Jin, J. D. and D. H. Yu, "Substrate integrated waveguide band-pass filter with coupled complementary split ring resonators," URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 2014.

9. Huang, Y. M., Y. Peng, Y. Zhou, H. Jin, S. Leng, and G. Wang, "Size-reduced dual-band HMSIW cavity filters loaded with double-sided SICSRRs," Electronics Letters, Vol. 53, No. 10, 689-691, 2017.
doi:10.1049/el.2016.4532

10. Xu, S., K. Ma, F. Meng, and K. S. Yeo, "Novel defected ground structure and two-side loading scheme for miniaturized dual-band SIW bandpass filter designs," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 4, 217-219, 2015.
doi:10.1109/LMWC.2015.2400916

11. Huang, Y. M., Z. Shao, W. Jiang, T. Huang, and G. Wang, "Half-mode substrate integrated waveguide bandpass filter loaded with horizontal-asymmetrical stepped-impedance complementary split-ring resonators," Electronics Letters, Vol. 52, No. 12, 1034-1036, 2016.
doi:10.1049/el.2016.0372

12. Chaudhury, S. S. and S. Awasthi, "Multiple passband circular cavity substrate integrated waveguide filter using asymmetric complementary split ring resonators," 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, Malaysia, 2017.

13. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. on Instrumentation and Measurement, Vol. 19, No. 4, 1970.
doi:10.1109/TIM.1970.4313932

14. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

15. Zhu, F., W. Hong, J. X. Chen, and K. Wu, "Wide stopband substrate integrated waveguide filter using corner cavities," Electronics Letters, Vol. 49, No. 1, 50-51, 2013.
doi:10.1049/el.2012.3891

16. Chen, F., K. Song, B. Hu, and Y. Fan, "Compact dual-band bandpass filter using HMSIW resonator and slot perturbation," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 10, 686-688, 2014.
doi:10.1109/LMWC.2014.2342883

17. Li, P., H. Chu, and R. S. Chen, "Design of compact bandpass filters using quarter-mode and eighth-mode SIW cavities," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 7, No. 6, 956-963, 2017.
doi:10.1109/TCPMT.2017.2677958