Vol. 163
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-11-13
Simultaneous Estimation of the Refractive Index and Thickness of Marine Oil Slick from the Degree of Linear Polarization of the Sun-Glint Reflection
By
Progress In Electromagnetics Research, Vol. 163, 133-142, 2018
Abstract
Airborne and spaceborne optical remote sensing is an important means formonitoring oil slicks on ocean surface. However, it is still a major challenge to determine both the category (related to a specific value of reflective index) and thickness of the marine oil slick with existing methods, particularly when the oil slick is too thin to obtain significant fluorescence signal with a laser induced fluorescence method. Sun-glint is usually harmful to optical remote sensing of an ocean target. In this work we utilize the polarized sun-glint reflection to monitor oil slicks on a rough ocean surface.The degree of linear polarization (DOLP) of the sun-glint reflection contains the characteristics information of the oil slick with different physical properties. Combiningthe polarized optical remote sensing and the inversion theory based on a thin-film optical model, weanalyze the variation trend of the DOLP with the parameters of solar zenith angle, sensor zenith angle, relative azimuth angle, refractive index and thickness of the oil slick. Different types and thicknesses of the oil slicksgive different Fresnel's reflection coefficients of polarized sun-glint reflections and consequently different Stokes parameters, which lead to different DOLP. We analyze the DOLP of the sun-glint reflection at the wavelength of 532 nm,and determine simultaneously the refractive index and thickness of marineoil slick from the DOLP values measured by a remote detector at two different zenith angles.
Citation
Sailing He, and Hongguang Dong, "Simultaneous Estimation of the Refractive Index and Thickness of Marine Oil Slick from the Degree of Linear Polarization of the Sun-Glint Reflection," Progress In Electromagnetics Research, Vol. 163, 133-142, 2018.
doi:10.2528/PIER18092601
References

1. Ying, L., B.-X. Liu, and P. Chen, "Study advancement in oil spill monitoring using hyper-spectral remote sensing," Marine Environmental Science, Vol. 31, 460-464, 2012.

2. Alam, M. S. and P. Sidike, "Trends in oil spill detection via hyperspectral imaging," International Conference on Electrical and Computer Engineering, 858-862, IEEE, 2013.

3. El-Rahman, S. A. and A. H. S. Zolait, "Hyperspectral image analysis for oil spill detection: A comparative study," International Journal of Computing Science & Mathematics, Vol. 9, No. 2, 2018.
doi:10.1504/IJCSM.2018.10012786

4. Salem, F., M. Kafatos, T. El-Ghazawi, R. Gomez, and R. Yang, "Hyperspectral image analysis for oil spill detection," Summaries of NASA/JPL Airborne Earth Science Workshop, 5-9, Pasadena, November 2001.

5. Liu, D.-L., L. Han, and J.-Q. Zhang, "Study of automatic marine oil spills detection using imaging spectroscopy," Spectroscopy and Spectral Analysis, Vol. 11, 3116-3119, 2013.

6. Lei, C., R. Deng, and X. Jian, "Study on monitoring offshore platform oil spill based on Aisa + airborne hyperspectral image taking the Zhujiang River estuary as an example," Transactions of Oceanology & Limnology, Vol. 1, 179-184, 2009.

7. Lu, Y., Y. Zhou, Y. Liu, et al. "Using remote sensing to detect the polarized sunglint reflected from oil slicks beyond the critical angle," Journal of Geophysical Research, Vol. 122, No. 8, 6342-6354, 2017.

8. Baszanowska, E. and Z. Otremba, "Spectral signatures of fluorescence and light absorption to identify crude oils found in the marine environment," Journal of the European Optical Society Rapid Publications, Vol. 9, No. 16, 4583-4587, 2014.

9. Hagemann, H. W. and A. Hollerbach, "The fluorescence behavior of crude oils with respect to their thermal maturation and degradation," Organic Geochemistry, Vol. 10, No. 1, 473-480, 1986.
doi:10.1016/0146-6380(86)90047-1

10. Stasiuk, L. D. and L. R. Snowdon, "Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: Crude oil chemistry, density and application to petroleum migration," Applied Geochemistry, Vol. 12, No. 3, 229-233, 1997.
doi:10.1016/S0883-2927(96)00047-9

11. Ryder, A. G., "Quantitative analysis of crude oils by fluorescence lifetime and steady state measurements using 380 nm excitation," Applied Spectroscopy, Vol. 56, No. 1, 107-116, 2002.
doi:10.1366/0003702021954287

12. Alpem, B., et al. "Detection and evaluation of hydrocarbons in source rocks by fluorescence microscopy," Organic Geochemistry, Vol. 20, No. 6, 789-795, 1993.
doi:10.1016/0146-6380(93)90063-H

13. Delaune, P. L., et al. "Enhanced wellsite technique for oil detection and characterization," SPE Annual Technical Conference and Exhibition Proceedings, Formation Evaluation and Reservoir Geology, 801-816, SPE-56802, 1999.

14. Pradier, B., et al. "Chemical basis of fluorescence alteration of crude oils and kerogens. 1. Microfluorimetry of an oil and its isolated fractions --- Relationships with chemical-structure," Organic Geochemistry, Vol. 16, No. 1-3, 451-460, 1990.
doi:10.1016/0146-6380(90)90061-4

15. Pharr, D. Y., et al. "Fingerprinting petroleum contamination using synchronous scanning fluorescence spectroscopy," Ground Water, Vol. 30, No. 4, 484-489, 1993.
doi:10.1111/j.1745-6584.1992.tb01523.x

16. Gao, F., J. Li, H. Lin, and S. He, "Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system," Optics Express, Vol. 25, No. 21, 25515-25522, 2017.
doi:10.1364/OE.25.025515

17. Han, Z., J. Wan, Y. Li, K. Liu, and J. Liu, Detection method of marine oil spilling and emulsified oil based on hyperspectral imaging under UV induction, Vol. 36, No. 1, 302-309, Acta Optica Sinica, 2016.

18. Fingas, M. and C. Brown, "Review of oil spill remote sensing," Marine Pollution Bulletin, Vol. 83, No. 1, 9-23, 2014.
doi:10.1016/j.marpolbul.2014.03.059

19. Liu, D.-Q., X.-N. Luan, J.-J. Guo, T.-W. Cui, J.-C. Jin, and R.-E. Zheng, "A small LIF remote detection system for port oil spill monitoring," Marine Sciences, Vol. 42, No. 1, 65-69, 2018.

20. Violetta, D., S. M. Babichenko, and L. Aleksey, "Natural water fluorescence characteristics based on lidar investigations of a surface water layer polluted by an oil film," Oceanologia, Vol. 44, No. 3, 339-354, 2002.

21. Cox, C. and W. Munk, "Measurement of the roughness of the sea surface from photographs of the sun’s glitter," JOSA, Vol. 44, No. 11, 838-850, 1954.
doi:10.1364/JOSA.44.000838

22. Jackson, C. R. and W. Alpers, "The role of the critical angle in brightness reversals on sunglint images of the sea surface," Journal of Geophysical Research Oceans, Vol. 115, No. C9, 2010.

23. Zhang, H. and M. H. Wang, "Evaluation of sunglint models using measurements," J. Quant. Spectrosc. Radiat. Transfer, Vol. 111, 492-506, 2010.
doi:10.1016/j.jqsrt.2009.10.001

24. Chami, M., "Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance," Journal of Geophysical Research: Oceans, Vol. 112, No. C5, 2007.

25. Harmel, T. and M. Chami, "Determination of sea surface wind speed using the polarimetric and multi directional properties of satel-lite measurements in visible bands," Geophysical Research Letters, Vol. 39, No. 19, L19611, 2012.
doi:10.1029/2012GL053508

26. Priest, R. G. and S. R. Meier, "Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces," Optical Engineering, Vol. 41, No. 5, 988-993, 2002.
doi:10.1117/1.1467360

27. Diner, D. J., F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, Ab. Davis, R. A. Chipman, and S. C. McClain, "Exploration of a polarized surface Bidirectional reflectance model using the ground-based Multiangle Spectro Polarimetric Imager," Atmosphere, Vol. 3, 591-691, 2012.
doi:10.3390/atmos3040591

28. Lu, Y. C., Q. J. Tian, and X. Li, "The remote sensing inversion theory of offshore oil slick thickness based on a two-beam interference model," Science China Earth Sciences, Vol. 54, 678-685, 2011.
doi:10.1007/s11430-010-4154-1