Vol. 80
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-08
Creation of a Magnetic Driven Gate for THz Rays
By
Progress In Electromagnetics Research M, Vol. 80, 103-109, 2019
Abstract
In this paper, magnetic fluids based on iron oxide Fe3O4 and 5BDSR alloy were obtained. Magnetic particles were obtained by nanosecond pulsed laser ablation. The preparation of the magnetic fluid was carried out by mechanical and ultrasonic stirring in a solution of polymethylphenylsiloxane. It is shown that under the influence of an external magnetic field, the spectral properties of the magnetic fluid of the 5BDSR alloy correspond to characteristics that can be used to create a magnetic gate.
Citation
Denis Olegovich Zyatkov, Vladimir Borisovich Balashov, Vasily Ivanovich Yurchenko, Elena Fakhrutdinova, Valery Svetlichnyi, Zahar Kochnev, Anastasia Knyazkova, Yury Kistenev, and Alexey Vladimirovich Borisov, "Creation of a Magnetic Driven Gate for THz Rays," Progress In Electromagnetics Research M, Vol. 80, 103-109, 2019.
doi:10.2528/PIERM18092303
References

1. Dunaevskn, G. E., V. I. Suslyaev, V. A. Zhuravlev, A. V. Badin, K. V. Dorozhkin, M. A. Kanygin, O. V. Sedelnikova, L. G. Bulusheva, and A. V. Okotrub, "Electromagnetic response of anisotropic polystyrene composite materials containing oriented multiwall carbon nanotubes," 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 12, 2014.

2. Vales-Pinzn, C., J. J. Alvarado-Gil, R. Medina-Esquivel, and P. Marttnez-Torres, "Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field," Journal of Magnetism and Magnetic Materials, Vol. 369, 114-121, 2014.
doi:10.1016/j.jmmm.2014.06.025

3. Zyatkov, D., A. Yurchenko, and V. Yurchenko, "Detection of the change of a magnetic field in the environment by magnetic fluid," J. Phys.: Conf. Ser., Vol. 881, 012037, 2017.
doi:10.1088/1742-6596/881/1/012037

4. Chen, Y., Q. Han, T. Liu, X. Lan, and H. Xiao, "Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid," Optics Letters, Vol. 38, No. 20, 3999-4001, 2013.
doi:10.1364/OL.38.003999

5. Zyatkov, D., A. Yurchenko, V. Balashov, B. Yurchenko, and A. Borisov, "Spectral characteristics of magnetic fluid with particles of different dimensions in the terahertz frequency range," 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), 2707-2711, St. Petersburg, Russia, May 22–25, 2017.

6. Yannopapas, V., S. H. L. Klapp, and S. D. Peroukidis, "Magneto-optical properties of liquid-crystalline ferrofluids," Optical Materials Express, Vol. 6, No. 8, 2681-2688, 2016.
doi:10.1364/OME.6.002681

7. Pei, L., H. Pang, X. Ruan, X. Gong, and S. Xuan, "Magnetorheology of a magnetic fluid based on Fe3O4 immobilized SiO2 coreshell nanospheres: Experiments and molecular dynamics simulations," RSC Adv., Vol. 7, 8142-8150, 2017.
doi:10.1039/C6RA28436A

8. Polley, D., A. Ganguly, A. Barman, and R. K. Mitra, "Polarizing effect of aligned nanoparticles in terahertz frequency region," Optics Letters, Vol. 38, No. 15, 2754-2756, 2013.
doi:10.1364/OL.38.002754

9. Huisman, T. J., R. V. Mikhaylovskiy, A. V. Telegin, Yu. P. Sukhorukov, A. B. Granovsky, S. V. Naumov, Th. Rasing, and A. V. Kimel, "Terahertz magneto-optics in the ferromagnetic semiconductor HgCdCr2Se4," Appl. Phys. Lett., Vol. 106, 132411, 2015.
doi:10.1063/1.4916884

10. Chen, S., F. Fan, S. Chang, Y. Miao, M. Chen, J. Li, X. Wang, and L. Lin, "Tunable optical and magneto-optical properties of ferrofluid in the terahertz regime," Optics Express, Vol. 22, No. 6, 6313-6321, 2014.
doi:10.1364/OE.22.006313

11. Liu, X., L. Xiong, X. Yu, S. He, B. Zhang, and J. Shen, "Magnetically controlled terahertz modulator based on Fe3O4 nanoparticle ferrofluids," J. Phys. D: Appl. Phys., Vol. 51, No. 10, 105003, 2018.
doi:10.1088/1361-6463/aaab97

12. Shalaby, M., M. Peccianti, Y. Ozturk, and R. Morandotti, "Terahertz Faraday rotation in a magnetic liquid: High magneto-optical gure of merit and broadband operation in a ferrofluid," Appl. Phys. Lett., Vol. 100, No. 24, 241107, 2012.
doi:10.1063/1.4729132

13. Zhang, D., B. Gokce, and S. Barcikowski, "Laser synthesis and processing of colloids: Fundamentals and applications," Chem. Rev., Vol. 117, No. 5, 3990-4103, 2017.
doi:10.1021/acs.chemrev.6b00468

14. Svetlichnyi, V. A., A. V. Shabalina, I. N. Lapin, D. A. Goncharova, D. A. Velikanov, and A. E. Sokolov, "Characterization and magnetic properties study for magnetite nanoparticles obtained by pulsed laser ablation in water," Applied Physics A, Vol. 123, No. 12, 2017.
doi:10.1007/s00339-017-1390-7

15. Sukhov, I. A., G. A. Shafeev, V. V. Voronov, M. Sygletou, E. Stratakis, and C. Fotakis, "Generation of nanoparticles of bronze and brass by laser ablation in liquid," Applied Surface Science, Vol. 302, 79-82, 2014.
doi:10.1016/j.apsusc.2013.12.018

16. Jakobi, J., S. Petersen, A. Menndez-Manjn, P. Wagener, and S. Barcikowski, "Magnetic alloy nanoparticles from laser ablation in cyclopentanone and their embedding into a photoresist," Langmuir, Vol. 26, No. 10, 6892-6897, 2010.
doi:10.1021/la101014g

17. Svetlichnyi, V. A., A. V. Shabalina, I. N. Lapin, D. A. Goncharova, D. A. Velikanov, and A. E. Sokolov, "Study of iron oxide magnetic nanoparticles obtained via pulsed laser ablation of iron in air," Applied Surface Science, Vol. 462, 226-236, 2018.
doi:10.1016/j.apsusc.2018.08.116

18. Pyanzina, E., "Bidisperse ferrofluids with chain aggregates: Microstructure and macroscopic properties," Magnetohydrodynamics, Vol. 49, No. 3/4, 297-300, 2013.

19. Zakinyan, A., Y. Dikansky, and M. Bedzhanyan, "Electrical properties of chain microstructure magnetic emulsions in magnetic field," Journal of Dispersion Science and Technology, Vol. 35, 111-119, 2014.
doi:10.1080/01932691.2013.769109

20. Rousan, A., H. M. El Ghanem, and N. Yusuf, "Faraday rotation and chain formation in magnetic fluids," IEEE Transactions on Magnetics, Vol. 25, No. 4, 3121-3124, 1989.
doi:10.1109/20.34384

21. Zyatkov, D., A. Yurchenko, and E. Yurchenko, "Capacitive sensor of weak magnetic field on the basis of feromagnetic fluid with micro- and nanoscale particles," 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), 3176-3181, St. Petersburg, Russia, May 22–25, 2017.