Vol. 80
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-12-07
Gain Enhancement of Cross Shaped Patch Antenna for IEEE 802.11ax Wi-Fi Applications
By
Progress In Electromagnetics Research Letters, Vol. 80, 91-99, 2018
Abstract
In this paper, a dual band high gain miniaturized cross shaped patch antenna is proposed for IEEE 802.11ax applications. The radiating patch size is 0.330λ0x0.417λ0 on a low cost Flame Retardant 4 substrate. A cross shaped radiating element is designed to cover the upper band of IEEE 802.11ax, and a four ring circular Complementary Split Ring Resonator (CSRR) is etched on the cross shaped radiating element to cover the lower band of IEEE802.11ax. Thus the dual bands of 802.11ax are achieved. In order to enhance the gain, 2x2 array hexagonal metamaterial unit cell is positioned behind the substrate. To extract the constitutive parameters of the circular CSRR, NRW (Nicolson-Ross-Wier) retrieval method is used. The measured maximum gain is approximately 6 dBi, 10 dBi for 2.4 GHz, 5 GHz, respectively. Parametric study on the geometrical dimensions is investigated using HFSS 15.0.
Citation
Pitchai Rajalakshmi, and Nagarajan Gunavathi, "Gain Enhancement of Cross Shaped Patch Antenna for IEEE 802.11ax Wi-Fi Applications," Progress In Electromagnetics Research Letters, Vol. 80, 91-99, 2018.
doi:10.2528/PIERL18091401
References

1. Bellata, B., "IEEE 802.11 ax; High-efficiency WLAN’s," IEEE Wireless Communication, Vol. 23, 38-46, 2016.
doi:10.1109/MWC.2016.7422404

2. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 1-2, John Wiley & Sons, Inc, 2006.

3. Attia, H., L. Yousefi, M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, "Enhanced gain microstrip antenna using engineered magnetic superstrate," IEEE Antennas Wireless Propagation Letters, Vol. 8, 1198-1201, 2009.
doi:10.1109/LAWP.2009.2035149

4. Javid Asad, M., M. Farhan Shafique, and S. A. Khan, "Performance restoration of dielectric embedded antennas using omega like complementary split ring resonators," Microwave and Optical Technology Letters, Vol. 59, No. 2, 357-362, 2017.
doi:10.1002/mop.30314

5. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, No. 2, 292-296, 2015.
doi:10.1002/mop.28835

6. Martinez, F. J. H., G. Zamora, F. Paredes, F. Martin, and J. Bonache, "Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1528-1531, 2011.
doi:10.1109/LAWP.2011.2181309

7. Pushpakaran, S. V., R. K. Raj, P. V. Vinesh, R. Dinesh, P. Mohanan, and K. Vasudevan, "A metaresonator inspired dual band antenna for wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 2287-2291, 2014.
doi:10.1109/TAP.2014.2301161

8. Pandeeswari, R. and S. Raghavan, "Meandered CPW-fed hexagonal split ring resonator monopole antenna for 5.8 GHz RFID applications," Microwave and Optical Technology Letters, Vol. 57, No. 3, 681-684, 2015.
doi:10.1002/mop.28920

9. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Frequency switching of electrically small patch antenna using metamaterial loading," Indian Journal of Radio & Space Physics, Vol. 40, 159-165, 2011.

10. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014.
doi:10.1002/mop.28602

11. Basaran, S. C., K. Sertel, et al. "Multiband monopole antenna with complementary split ring resonators for WLAN and Wimax applications," Electronics Letters, Vol. 49, No. 10, 636-638, 2013.
doi:10.1049/el.2013.0357

12. Yang, K., H. Wang, Z. Lei, Y. Xie, and H. Lai, "CPW-fed slot antenna with triangular SRR terminated feed line for WLAN/WiMAX applications," Electronics Letters, Vol. 47, No. 12, 685-686, 2011.
doi:10.1049/el.2011.1232

13. Quan, X. L., R. L. Li, Y. H. Cui, and M. M. Tentzeris, "Analysis and design of a compact dual band directional antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 547-550, 2012.
doi:10.1109/LAWP.2012.2199458

14. Sharma, S. K. and R. K. Chaudhary, "Dual-band metamaterial-inspired antenna for mobile applications," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1444-1447, 2015.
doi:10.1002/mop.29113

15. Pandeeswari, R., "Complimentary split ring resonator inspired meandered CPW-fed monopole antenna for multiband operation," Progress In Electromagnetics Research C, Vol. 80, 13-20, 2018.
doi:10.2528/PIERC17101402

16. Thamil Selvi, N., R. Pandeeswari, and P. N. Thiruvalar Selvan, "An inset-fed rectangular microstrip patch antenna with multiple split ring resonator loading for WLAN and RF-ID applications," Progress In Electromagnetics Research C, Vol. 81, 41-52, 2018.
doi:10.2528/PIERC17110102

17. Balanis, C. A., Modern Antenna Handbook, 157-169, John Wiley and Sons. Inc., 2005.

18. Saha, C. and J. Y. Siddiqui, "A comparative analysis for split ring resonator of different geometrical shapes," 2011 IEEE Applied Electromagnetics Conference (AEMC), 1-4, 2011.

19. Pal, D., A. Patnaik, and S. N. Sinha, "An analytical formulation of metamaterial based compact patch antennas," International Journal of Electronics Letters, 2016.

20. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, 2002.

21. Chen, H. J., J. Zhang, Y. Bai, Y. Luo, Ran, Q. Jiang, et al. "Experimental retrieval of the effective parameters of metamaterial based on a waveguide method," Optics Express, Vol. 14, No. 26, 2006.