Vol. 76
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-16
Magnetic and Electric Coupling Analysis for Angular Misalignment of Spiral Resonators in WPT Systems
By
Progress In Electromagnetics Research M, Vol. 76, 1-8, 2018
Abstract
Angular misalignment is an issue for many potential applications of wireless power transfer (WPT). It is necessary to keep coupling coefficient, especially the magnetic coupling to be insensitive to angular misalignment. This paper analyzes the coupling between the spiral resonators when one resonator rotates with respect to the other. The quantitative data of magnetic and electric coupling components as well as the total coupling coefficient in angular misalignments are presented. Furthermore, a 3D spiral resonator which is less sensitive to angular misalignment is proposed. The coupling when the 3D spiral rotates is studied and the results of analysis and experiment both show that the proposed 3D spiral resonator can keep coupling coefficient at a certain level under angular misalignment.
Citation
Yangjun Zhang, and Tatsuya Yoshikawa, "Magnetic and Electric Coupling Analysis for Angular Misalignment of Spiral Resonators in WPT Systems," Progress In Electromagnetics Research M, Vol. 76, 1-8, 2018.
doi:10.2528/PIERM18090504
References

1. Tesla, N., "Transmission of electrical energy without wire," Elect. World Eng., Mar. 5, 1904, Online Available: ww.tfcbooks.com/tesla/.

2. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, Jul. 2007.
doi:10.1126/science.1143254

3. Shonohara, N., Wireless Power Transfer via Radiowaves, ISTE Ltd. and John Wiley & Sons, Inc., 2014.

4. Awai, I., "Magnetic resonant wireless power transfer," Nikkei Electronics, 2011 (in Japanese).

5. Ohira, T., "Maximum available efficiency formulation based on a black-box model of linear two port power transfer systems," IEICE Electronics Express, ELEX, Vol. 11, No. 13, 1-6, #20140448, Jun. 2014.

6. Zhang, J., X. Yuan, C. Wang, and Y. He, "Comparative analysis of two-coil and three-coil structures for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 32, No. 1, 341-352, 2017.
doi:10.1109/TPEL.2016.2526780

7. Tierney, B. B. and A. Grbic, "Design of self-matched planar loop resonators for wireless nonradiative power transfer," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 909-919, 2014.
doi:10.1109/TMTT.2014.2303940

8. Hui, S. Y. R., W. Zhong, and C. K. Lee, "A critical review of recent progress in mid-range wireless power transfer," IEEE Transactions on Power Electronics, Vol. 29, No. 9, 4500-4511, 2014.
doi:10.1109/TPEL.2013.2249670

9. Fernandes, R. D., J. N. Matos, and N. B. Carvalho, "Resonant electrical coupling: Circuit model and first experimental results," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 9, 2983-2990, 2015.
doi:10.1109/TMTT.2015.2458323

10. Zhang, X. Y., C. D. Xue, and J. K. Lin, "Distance-insensitive wireless power transfer using mixed electric and magnetic coupling for frequency splitting suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4307-4316, 2017.
doi:10.1109/TMTT.2017.2686858

11. Hong, J.-S., "Couplings of asynchronously tuned coupled microwave resonators," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 147, No. 5, 354-358, 2000.
doi:10.1049/ip-map:20000675

12. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221619

13. Awai, I., "New expressions for coupling coefficient between resonators," IEICE Trans. Electron., E88C, Vol. 12, 2295-2301, Dec. 2005.
doi:10.1093/ietele/e88-c.12.2295

14. Awai, I., S. Iwamujra, H. Kubo, and A. Sanada, "Separation of coupling coefficient between resonators into electric and magnetic contributions," IEICE, Vol. J88-C, No. 12, 1033-1039, 2005 (in Japanese).

15. Elnaggar, S. Y., R. J. Tervo, and S. M. Mattar, "Coupled mode theory applied to resonators in the presence of conductors," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 7, 2124-2132, 2015.
doi:10.1109/TMTT.2015.2432766

16. Awai, I. and Y. Zhang, "Coupling coefficient of resonators," IEICE Trans. Electron, Vol. J89-C, No. 12, 962-968, 2006 (in Japanese).

17. Awai, I. and Y. Zhang, "Phenomenological and essentialismic theories of coupling between the resonators," IEICE Trans. Electron, Vol. J98-C, No. 12, 314-321, 2015 (in Japanese).

18. Awai, I., Y. Zhang, T. Komori, and T. Ishizaki, "Coupling coefficient of spiral resonators used for wireless power transfer," 2010 Asia-Pacific Microwave Conference, 773-776, Yokohama, Japan, Dec. 2010.

19. Zhang, Y., T. Yoshikawa, and I. Awai, "Analysis of electric and magnetic coupling components for spiral resonators used in wireless power transfer," 2014 Asia-Pacific Microwave Conference, 1366-1368, 2014.

20. Zhang, Y., T. Yoshikawa, and T. Kitahara, "A quantitative analysis of coupling for a WPT system including dielectric/magnetic materials," Progress In Electromagnetics Research Letters, Vol. 72, 127-134, 2018.
doi:10.2528/PIERL17102001

21. Sampath, J. P. K., A. Arokiaswami, and D. M. Vilathgamuwa, "Figure of merit for the optimization of wireless power transfer system against misalignment tolerance," IEEE Transactions on Power Electronics, Vol. 32, No. 6, 4359-4369, 2017.
doi:10.1109/TPEL.2016.2601939

22. Lin, D., C. Zhang, and S. Y. Ron Hui, "Mathematic analysis of omnidirectional wireless power transfer - Part-II three-dimensional systems," IEEE Transactions on Power Electronics, Vol. 32, No. 1, 613-624, 2017.
doi:10.1109/TPEL.2016.2523506

23. Badr, B. M., R. Somogyi-Gsizmazia, K. R. Delaney, and N. Dechev, "Wireless power transfer for telemetric devices with variable orientation, for small rodent behavior monitoring," IEEE Sensors Journal, Vol. 15, No. 4, 2144-2156, 2015.
doi:10.1109/JSEN.2014.2363836